

National Workshop 5

LCCS National Workshop 5

LCCS National Workshop 5

Table of Contents

Digital Portfolio for ALT S & Coursework Video

Digital Strategy for Schools & Action Plan 6

Defining Digital Portfolio 7

Levels within a Digital Portfolio 8

Activity - Teacher Show & Tell 9

Digital Portfolios for LCCS 12

The Art of Reflection 14

ATS2020 Project 17

White Paper on Digital Portfolios 20

JISC Case Studies 22

Storyboards for Video 23

Storyboard Template 23

Additional Video Resources 25

Evaluation and Testing 28

Brainstorming on prior knowledge of software testing 30

Reflecting on Testing 31

Types of Testing / Testing in different software development models 36

Designing and Implementing a Test Plan

Appendices – Glossary of Terms

40

42

LCCS National Workshop 5

Table of Contents

Algorithms 54

Section 1 – Critical Reflection: Who am I to teach? 55

Algorithmic Bias 60

Section 2 – Introduction to Algorithms 69

Activity #1 73

Section 3 – Searching and Sorting Algorithms 78

A Simple Sort Algorithm 83

The Simple (Selection) Sort 85

Insertion Sort 90

Bubble Sort 97

Quicksort 104

Linear Search 109

Binary Search 116

Activity #2 125

Section 4 – Analysis of Algorithms 132

Big O 133

Activity #3 139

Task A – Analysis of Search Algorithms 140

Task B – Analysis of Sorting Algorithms 146

Section 5 – Final Reflection 150

Digital Portfolios for ALTs &
the Coursework Video

LCCS National Workshop 5 Workbook

 6

Digital Strategy for Schools

“A constructivist pedagogical orientation supports
teachers in effectively using ICT with their students, i.e.
learners are actively involved in a process of determining
meaning and knowledge for themselves.”

Digital Strategy for Schools 2015 - 2020

Digital Strategy for Schools Action Plan -
Indicators of Success

“All students have a digital portfolio with self-
generated content across the entire curriculum and a
recognised capacity in discerning the ethical use of
digital technologies.”

www.education.ie/en/Publications/Policy-Reports/Digital-Strategy-Action-Plan-2017.pdf

LCCS National Workshop 5 Workbook

 7

Defining Digital Portfolios

“Digital portfolios are student-owned dynamic digital workspaces

whereby students can capture their learning, their ideas, access

their collections of work, reflect on their learning, share it, set

goals, seek feedback and showcase their learning and

achievements.”

NCCA, 2013

LCCS National Workshop 5 Workbook

 8

Three Levels of Digital Portfolio

Vestibulum congue

Storage

WorkspaceShowcase

Digital
Portfolio

Using Digital Portfolios to support Formative Assessment

EUFolio (2015)
Adapted from: Assessment for Learning and ePortfolios (2012)

LCCS National Workshop 5 Workbook

 9

Teacher Show and Tell 1

Use the prompts below to record your thoughts.

How is this demonstration/example extending my thinking in relation to Digital Portfolios?

What ideas has this demonstration given me that I could use to support my own students?

LCCS National Workshop 5 Workbook

 10

Teacher Show and Tell 2

Use the prompts below to record your thoughts.

How is this demonstration/example extending my thinking in relation to Digital

Portfolios?

What ideas has this demonstration given me that I could use to support my own

students?

LCCS National Workshop 5 Workbook

 11

Teacher Show and Tell 3

Use the prompts below to record your thoughts.

How is this demonstration/example extending my thinking in relation to Digital Portfolios?

What ideas has this demonstration given me that I could use to support my own students?

LCCS National Workshop 5 Workbook

 12

Digital Portfolios for LCCS

Computer science in practice provides multiple opportunities for students to apply the

practices and principles and the core concepts. Students work in teams to carry out four

applied learning tasks over the duration of the course, each of which results in the creation

of a real or virtual computational artefact[1]. These artefacts should relate to the students’

lives and interests. Where possible, the artefacts should be beneficial to the community and

society in general. Examples of computational artefacts include programs, games, web

pages, simulations, visualisations, digital animations, robotic systems, and apps.

The four applied learning tasks explore the four following contexts: Interactive information

systems, Analytics, Modelling and simulation, and Embedded systems. The tasks provide

opportunities for students to develop their theoretical and procedural understanding as they

grapple with computer science practices, principles and core concepts in increasingly

sophisticated applications.

The output from each task is a computational artefact and a concise individual report

outlining its development. In the report, students outline where and how the core concepts

were employed. The structure of the reports should reflect the design process shown above

in Figure 3. Initial reports could be in the form of structured presentations to the whole class.

As students progress, reports should become detailed and individual. Reports are collected

in a digital portfolio along with the computational artefact and must be verified as completed

by both the teacher and the student. The (separate) externally-assessed coursework will be

based on all learning outcomes, with those of strand 3 being particularly relevant (Taken

from the LCCS specification).

LCCS National Workshop 5 Workbook

 13

Additional Notes on Digital Portfolios for LCCS:

LCCS National Workshop 5 Workbook

 14

The Art of Reflection - Portfolios allow students to regularly reflect
on their learning process - Beth Holland

A few weeks ago, I met with a group of educators to discuss their observations from a series

of learning walks in classrooms. They found that though students could accurately tell them

what they were doing, they struggled to articulate what they might be learning. In response, I

suggested building reflection into the daily routine. Whether students use audio and video or

pen and paper, encouraging them to take a few minutes to capture not only what they

learned, but also how and why, may ultimately allow them to make deeper connections to

the content.

This naturally led to a conversation about portfolios. Portfolio discussions typically centre on

the tools: how to save, share, and publish student work. When we instead let the process of

curating, reflecting, and sharing serve as the focal point, portfolios become summative in

nature and can be viewed as an add-on to the end of a unit, project, or activity.

For portfolios to be truly valuable to both students and teachers, they need to provide insight

into not only what students created as a representation of their learning, but also how and

why they created it. If the ultimate goal is to develop students as learners, they need an

opportunity to make connections to the content as well as the overarching learning

objectives.

Progress & Performance Portfolios

Through the act of collecting learning artifacts and compiling them into portfolios, students

should have an opportunity to reflect upon their experiences and see their own growth. In

Digital Student Portfolios, Matt Renwick discusses the need for both progress and

performance portfolios: “By capturing student learning progress and performance in the

moment… we can bring learning to life.”

Artists and writers often keep a portfolio to reflect upon their work. Leonardo DaVinci kept

hundreds of notebooks documenting his thinking in notes, diagrams, and sketches. John

Updike left behind thousands of documents illustrating how he rewrote paragraphs and

solved technical challenges. In a similar manner, students can curate a body of work that

represents their progress as well as their performance to show their thinking throughout their

learning experiences.

Additionally, when we encourage students to capture their thinking on a daily basis,

reflection is no longer merely a task at the end of a project. To build self-awareness, self-

regulation, and self-reflection, students need time and scaffolding. By encouraging them to

document their study strategies, their confidence with the material, and the connections they

LCCS National Workshop 5 Workbook

 15

may be able to make between units of study or even across courses, educators can help

students develop—and recognize—their skills as learners.

Teaching the Art of Reflection

The question remains, though: How do we teach reflection? Too often, students struggle

with reflection because they don’t understand what they were supposed to learn and why.

What if students knew from the start of the school year that all of their work would be in

support of two or three essential questions, such as: What are the characteristics of good

problem solvers? If students keep the essential questions at the forefront of their thinking,

imagine the impact as they document their progress and their learning.

Teachers can also leverage visible thinking routines to scaffold student reflection. Developed

at Harvard’s Project Zero, these questions support student inquiry and guide metacognition.

For example, teachers can students at the end of each day or week to respond to the

Connect, Extend, Challenge routine:

Connect: How are the ideas that you learned connected to what you already knew?

Extend: How did your learning then extend your thinking?

Challenge: What do you still find challenging or puzzling?

This routine helps students synthesize ideas and make connections to prior content,

encourages them to wonder and seek out new questions, and provides them an opportunity

to acknowledge what they still do not know.

Students’ critical thinking as supported by the utilisation of both essential questions and

visible thinking routines creates a more robust model for digital portfolios. Because the

emphasis is not simply on publishing and sharing products, learning remains the central

focus. As students reflect on each experience, they become more aware of the processes

and strategies that make them successful, allowing them to learn from their successes as

well as their challenges or failures.

Published December 17, 2017at

https://www.edutopia.org/blog/digital-portfolios-art-of-reflection-beth-holland

https://www.edutopia.org/blog/digital-portfolios-art-of-reflection-beth-holland

LCCS National Workshop 5 Workbook

 16

Additional Notes on Digital Portfolios:

LCCS National Workshop 5 Workbook

 17

What is ATS2020

Preparing students for living and working in the 21st century requires education systems to

give citizens core knowledge along with a set of key competences. The rapid growth of

digital tools use by the youth challenges national ministries of education. Student exposure

in web 2.0 tools, devices, and environments brings new affordances, challenges,

opportunities, and demands new skills for teaching and assessment of and for learning.

Education must reform to accommodate, facilitate and develop 21st century learning,

teaching, assessment and skills[1]. Education stakeholders agree on this “Opening up”; but

many are at a loss for implementation and assessment, especially within national curricula.

The Assessment of Transversal Skills 2020 (ATS2020) project proposes a comprehensive

learning model to enhance student transversal, 21st century indispensable, skills, within the

diverse EU national curricula, including provision of teachers with modern approaches and

innovative tools for the assessment of these skills.

The ATS2020 partnership extends and fleshes-up existing models combining process and

product: a web of learning activities leading to learning outcomes; technological and

scaffolding tools evaluated, extended and redesigned. Evidence of learning has been

gathered using an ePortfolio three-level developmental process (repository, workspace and

showcase)[2] with an embedded continuous reflection cycle of “my learning”[3]. Teachers

and students at a scale sufficiently large and diverse for valid conclusions have been actively

involved; they collaborate and make evidence-based decisions while (re)designing

instruction and learning.

ATSS2020 Learning Model

ATS2020 explores the impact of the intervention through valid and reliable mixed-method

evaluation, collecting data from 10 countries, in a range of classrooms from more than 200

schools, involving more than 800 teachers and 10,000 learners. Transferability and

scalability across Europe are the main issues of the experimentation results analysis.

LCCS National Workshop 5 Workbook

 18

Through extensive dissemination activities, the project contributes to the growing discussion

around the development and assessment of transversal skills within upper primary and lower

second level education. This evidence aims to help Ministries of Education and the

European Commission to formulate informed policies and implementation strategies for the

development and assessment of transversal competences across Europe.

In summary, the main outcomes of the project are:

1. A validated model for student learning and transversal skills assessment based on:

 Age-suitable transversal competences;

 National curricula;

 Student-centered approaches for learning;

 Scaffolding tools for innovative instruction and assessment;

 Digital Environments and tools to tap technology affordances (e.g. ePortfolio,

learning analytics, social networks, assessment rubrics).

2. Over 1,000 teachers experienced in implementing the model.

3. CPD programme ready for deployment beyond the pilot schools.

4. Sound impact evaluation and subsequent policy recommendations at the National and

EU levels.

5. Scalability models for policy makers at regional, national and EU levels.

Further information at - http://www.ats2020.eu/

http://www.ats2020.eu/

LCCS National Workshop 5 Workbook

 19

Additional Notes on ATA2020:

LCCS National Workshop 5 Workbook

 20

Access full paper at

http://www.taskstream.com/reflect/whitepaper.pdf

http://www.taskstream.com/reflect/whitepaper.pdf

LCCS National Workshop 5 Workbook

 21

Access full paper at

http://repository.jisc.ac.uk/5997/1/effectivepracticeeportfolios.pdf

http://repository.jisc.ac.uk/5997/1/effectivepracticeeportfolios.pdf

LCCS National Workshop 5 Workbook

 22

Access full paper at

http://repository.jisc.ac.uk/7455/1/enhance-student-progression-and-employability-with-e-

portfolios.pdf

http://repository.jisc.ac.uk/7455/1/enhance-student-progression-and-employability-with-e-portfolios.pdf
http://repository.jisc.ac.uk/7455/1/enhance-student-progression-and-employability-with-e-portfolios.pdf

LCCS National Workshop 5 Workbook

 23

Storyboards for Video

Storyboarding is one of the important steps of pre-production. It is a tool that sketches

different (in most cases, critical) scenes in the video you are about to make. It basically looks

like a comic strip. Each frame shows who or what is in the scene, what is being said and any

other text or graphics that appear on the screen. Storyboards help work out inconsistencies

in your idea for the video and the script. With its help, you can edit out the scenes that don’t

add up before you go ahead and film.

Steps to making a storyboard

https://creately.com/blog/diagrams/how-to-make-a-storyboard-for-video/

Storyboard Template

https://creately.com/blog/diagrams/how-to-make-a-storyboard-for-video/

LCCS National Workshop 5 Workbook

 24

Additional Notes on the Coursework Video:

LCCS National Workshop 5 Workbook

 25

Additional Video Resources

FIS Film Project Technical Guide - This guide provides information on the technical aspects

of recording moving image. It is intended that it be used in conjunction with the FIS Film

Project Film Making Lessons but can also be used as standalone video recording technical

support too.

https://rise.articulate.com/share/3Dbi7wsc6YJoQVirjxd0YqgNWtbEVm2h#/

https://rise.articulate.com/share/3Dbi7wsc6YJoQVirjxd0YqgNWtbEVm2h#/

LCCS National Workshop 5 Workbook

 26

https://mdlab.lau.edu.lb/wp-content/uploads/2015/09/Making-Videos-with-FilmoraGo-mobile-

application.pdf

https://mdlab.lau.edu.lb/wp-content/uploads/2015/09/Making-Videos-with-FilmoraGo-mobile-application.pdf
https://mdlab.lau.edu.lb/wp-content/uploads/2015/09/Making-Videos-with-FilmoraGo-mobile-application.pdf

LCCS National Workshop 5 Workbook

 27

Additional Notes:

LCCS National Workshop 5 Workbook

 28

Session 2

Evaluation and Testing

LCCS National Workshop 5 Workbook

 29

Evaluation & Testing

Key Content:

1: Brainstorming on prior knowledge / bias

 Brainstorming – Why is testing important?

2: Reflecting on some issues in software testing

 Case Studies – Boeing / French localised.

 Sports analogy – Defenders v Attackers.

 Things to consider about testing

3: Testing a sample app / program

 In small groups on an ad-hoc basis.

 Test / debug Python program (Resources in Manual)

 Test Driven Development (TDD) as a programming pedagogy.

4 : Types of Testing / Testers’ roles in different software development models

 Types of Testing - Researching in groups and reporting back.

 Functional testing – explanation chart here.

 Think pair share on the following types of Functional Testing:

1. White v black box testing.

2. Unit vs Integration (System Testing)

3. Smoke Testing, Sanity Testing,

Regression testing, Non-functional testing

 Testing in different development models (eg Staged and Agile).

5 : Designing a Test Plan

 Designing a Test Plan for a program / app /project (eg Glitch or teachers’ resources).

 Design Test Plan, showing how testing fits in the development cycle, writing some

test cases. (Link to algorithms regarding clarity – eg how to tie shoelaces)

 Feedback from participants and reflection.

6: Appendices (including Glossary of Terms)

LCCS National Workshop 5 Workbook

 30

1: Brainstorming on prior knowledge / bias

Activity 1: Why is testing Important.

Consider testing in a variety of situations and give reasons why is important in software

development?

LCCS National Workshop 5 Workbook

 31

Activity 2: Reflecting on Software Testing.

Read the following piece and reflect:

Article: Some Thoughts on Software Testing

Imagine testing a product such as the one shown – a STEM toy, in which the red ‘rocket’ is

supposed to fly out of its holder when a person blows across the top.

If you were to test this toy, how would you do it and how long would it take? It is tempting

perhaps to answer that, as you just want to test if it works, the test might consist of blowing

across the top as required and if it functions as expected, your testing is over. In 5 seconds.

However, you were not given full requirements for your test, and you may want to do some

or all of the following:

1. Assess the power required for the toy to function properly.

2. Who could produce such power. Possibly estimate an age where you could reasonably

assume that the person could manage to do this.

3. Analyse any potential dangers in the product? How could these be tested? Is there a

danger of a young child swallowing this?

4. Test if the paint on the rocket is poisonous?

5. Evaluate the size / raw materials / colour scheme / shape and model alternatives, which

could be used in future versions.

6. Could the test process be done earlier / integrated into the manufacture of the toy.

In the case of software, testing involves much more than just a cursory check on whether

something works or not. Consider the scores of terms in the glossary from Ad-hoc testing to

White box testing, and it becomes easy to see that this is a huge field. Whether in industry,

LCCS National Workshop 5 Workbook

 32

college or school, the testing process can involve evaluating the software; making

suggestions for future design; finding inefficiencies in the code; discovering unusual

situations where the code doesn’t work; considering the user’s experience; making

suggestions about the look and feel of the program or app.

The software tester has a lot of responsibility. Consider one of the popular word processing

programs. A small mistake in, for example, a short-cut key, could have disastrous

consequences for thousands of end users. The cost of fixing Bugs which are not found in

time is huge when compared from a bug that is found in the early stages, as can be seen in

the next diagram:

Aircraft manufacturer Boeing suffered losses of millions of dollars, when they tried to cut

costs on their software testing. A problem where the nose of the aircraft went too high was

overcorrected in a solution which was not properly tested. More details are in a Bloomberg

article in the appendices.

www.systemsemantics.com

LCCS National Workshop 5 Workbook

 33

The amount of bugs in large programs is enormous and lead to the tester having to make

decisions of how to approach a project. In Windows xp, for example, there were 65,000

bugs found before the product went to market. And these were just the ones found. In one

of the activities, you are asked to test the Shading tab of the Borders and Shading dialogue

box. With the thousands of different colours and hundreds of different styles of table, you

could be left with millions of test cases, which would be impossible to carry out in a

reasonable time. So the tester will often use heuristics to decide what would and wouldn’t

be included in the test plan.

Some of the highest paid people in the IT industry are testers, as they have the skill of, not

just being creative, but being able to analyse the work of software developers. To give an

analogy from sport, testers are similar to defenders – they have to do an analysis of each

attacker they will be facing, and develop a plan, one of which is shown in part below. The

attackers, on the other hand, doesn’t need to do this level of research every game.

LCCS National Workshop 5 Workbook

 34

Recent changes to software development methodologies are reflected in a changing role for

software testers. In the traditional Waterfall model (and other staged models) the testing

process takes place at a particular point in the software development cycle.

 pininterest.com

Two more recent software development methodologies are Test-driven development (TDD)

and Agile development. In TDD, the test cases are written before any coding is done. This

has led to a shift of roughly one tester for every eight developers one tester for three

developers. Microsoft, by the way, generally had a one-to one ratio, but that was due to the

huge amount of localisation required for their products.

In Agile Software Development, the distinct stages have been removed and testers are

involved right from the start, in a constant dialogue with clients, designers and project

managers. The role of the tester has been enhanced and made more central.

karthiksangi.wordpress.com

LCCS National Workshop 5 Workbook

 35

Consider testing in light of the article, “Some thoughts on Software Testing”?

LCCS National Workshop 5 Workbook

 36

Activity 3: A test scenario: Test the functionality of the Shading tab in the

Borders and Shading dialog box in MS Word.

Insert a table with 2 columns and a number of rows in MS Word. Something like the table

below, which was generated using the “Convert Text to Table” option from the Insert menu.:

ALGORITHM - Shopping
1 Get a trolley
2 Buy groceries
3 Go to check out
4 Take out money
5 Bag groceries

Test the functionality of the Borders and Shading Dialog box:

LCCS National Workshop 5 Workbook

 37

Notes for testing the Shading Tab in MSWord:

LCCS National Workshop 5 Workbook

 38

Activity 4: Think – pair – share. Choose from:

o White v black box testing;

o Unit vs Integration (System Testing)

o Smoke Testing, Sanity Testing or others from glossary / random generator.

LCCS National Workshop 5 Workbook

 39

Activity 5: Think – pair – share. Choose from:

o Designing a test plan.

o Writing test cases.

o Test-driven development

LCCS National Workshop 5 Workbook

 40

Activity 6: Write a test plan (TDD) for orders for:

www.cupannua.com

LCCS National Workshop 5 Workbook

 41

Activity 7: Design and develop a test plan and test cases for Glitch files and

ALTs / coursework.

LCCS National Workshop 5 Workbook

 42

Appendices

 Glossary of terms used in Software Testing

 Ad hoc testing

Testing carried out informally without test cases or other written test instructions.

 Agile development
A development method that emphasizes working in short iterations. Automated testing is

often used. Requirements and solutions evolve through close collaboration between team

members that represent both the client and supplier.

 Alpha testing
Operational testing conducted by potential users, customers, or an independent test team at

the vendor’s site. Alpha testers should not be from the group involved in the development of

the system, in order to maintain their objectivity. Alpha testing is sometimes used as

acceptance testing by the vendor.

 Anomaly
Any condition that deviates from expectations based on requirements specifications, design

documents, standards etc. A good way to find anomalies is by testing the software.

 B

 Beta testing
Test that comes after alpha tests, and is performed by people outside of the organization that

built the system. Beta testing is especially valuable for finding usability flaws and

configuration problems.

 Bespoke software: Software developed specifically for a set of users or customers. The

opposite is off-the-shelf software.

 Big-bang integration
An integration testing strategy in which every component of a system is assembled and tested

together; contrast with other integration testing strategies in which system components are

integrated one at a time.

 Black box testing
Testing in which the test object is seen as a “black box” and the tester has no knowledge of its

internal structure. The opposite of white box testing.

 Bottom-up integration
An integration testing strategy in which you start integrating components from the lowest

level of the system architecture. Compare to big-bang integration and top-down integration.

 Boundary value analysis
A black box test design technique that tests input or output values that are on the edge of what

is allowed or at the smallest incremental distance on either side of an edge. For example, an

input field that accepts text between 1 and 10 characters has six boundary values: 0, 1, 2, 9,

10 and 11 characters.

 Bug
A slang term for fault, defect, or error. Originally used to describe actual insects causing

malfunctions in mechanical devices that predate computers. The International Software

Testing Qualifications Board (ISTQB) glossary explains that “a human being can make an

error (mistake), which produces a defect (fault, bug) in the program code, or in a document. If

a defect in code is executed, the system may fail to do what it should do (or do something it

shouldn’t), causing a failure. Defects in software, systems or documents may result in

failures, but not all defects do so.”

https://reqtest.com/testing-blog/what-is-boundary-value-analysis-and-equivalence-partitioning/

LCCS National Workshop 5 Workbook

 43

 C

 Capture/playback tool
See record and playback tool.

 CAST
A general term for automated testing tools. Acronym for computer-aided software testing.

 Change request
A type of document describing a needed or desired change to the system.

 Checklist
A simpler form of test case, often merely a document with short test instructions (“one-

liners”). An advantage of checklists is that they are easy to develop. A disadvantage is that

they are less structured than test cases. Checklists can complement test cases well. In

exploratory testing, checklists are often used instead of test cases.

 Client
The part of an organization that orders an IT system from the internal IT department or from

an external supplier/vendor. See also supplier.

 Code coverage
A generic term for analysis methods that measure the proportion of code in a system that is

executed by testing. Expressed as a percentage, for example, 90 % code coverage.

 Code review
See Review.

 Code standard
Description of how a programming language should be used within an organization. See also

naming standard.

 Compilation
The activity of translating lines of code written in a human-readable programming language

into machine code that can be executed by the computer.

 Component
The smallest element of the system, such as class or a DLL.

 Component testing
Test level that evaluates the smallest elements of the system. See also component. Also

known as unit test, program test and module test.

 Configuration management
Routines for version control of documents and software/program code, as well as managing

multiple system release versions.

 Configuration testing
A test to confirm that the system works under different configurations of hardware and

software, such as testing a website using different browsers.

 Context-driven testing
Testing which makes use of debugging techniques inspired by real-world usage conditions. It

is a method of testing which encourages testers to develop testing opportunities based on the

specific details of any given situation.

 D

 Daily build
A process in which the test object is compiled every day in order to allow daily testing. While

it ensures that defect reports are reported early and regularly, it requires automated testing

support.

 Debugging
The process in which developers identify, diagnose, and fix errors found. See also bug and

defect.

 Decision table
A test design and requirements specification technique. A decision table describes the logical

conditions and rules for a system. Testers use the table as the basis for creating test cases.

LCCS National Workshop 5 Workbook

 44

 Defect
A flaw in a component or system that can cause the component or system to fail to perform its

required function. A defect, if encountered during execution, may cause a failure of the

component or system.

 Defect report
A document used to report a defect in a component, system, or document. Also known as an

incident report.

 Deliverable
Any product that must be delivered to someone other than the author of the product.

Examples of deliverables are documentation, code and the system.

 Desk checking
A static testing technique in which the tester reads code or a specification and “executes” it in

his mind.

 Document review
See review.

 Driver
See test driver.

 Dynamic testing
Testing performed while the system is running. Execution of test cases is one example.

 E

 End-to-end testing
Testing used to test whether the performance of an application from start to finish conforms

with the behaviour that is expected from it. This technique can be used to identify system

dependencies and confirm the integrity of data transfer across different system components

remains.

 Entry criteria
Criteria that must be met before you can initiate testing, such as that the test cases and test

plans are complete.

 Error
A human action that produces an incorrect result.

 Error description
The section of a defect report where the tester describes the test steps he/she performed, what

the outcome was, what result he/she expected, and any additional information that will assist

in troubleshooting.

 Error guessing
Experience-based test design technique where the tester develops test cases based on his/her

skill and intuition, and experience with similar systems and technologies.

 Execute
Run, conduct. When a program is executing, it means that the program is running. When you

execute or conduct a test case, you can also say that you are running the test case.

 Exhaustive testing
A test approach in which you test all possible inputs and outputs.

 Exit criteria
Criteria that must be fulfilled for testing to be considered complete, such as that all high-

priority test cases are executed, and that no open high-priority defect remains. Also known as

completion criteria.

 Expected result
A description of the test object’s expected status or behaviour after the test steps are

completed. Part of the test case.

 Exploratory testing
A test design technique based on the tester’s experience; the tester creates the tests while

he/she gets to know the system and executes the tests.

LCCS National Workshop 5 Workbook

 45

 External supplier
A supplier/vendor that doesn’t belong to the same organization as the client/buyer. See also

internal supplier.

 Extreme programming
An agile development methodology that emphasizes the importance of pair programming,

where two developers write program code together. The methodology also implies frequent

deliveries and automated testing.

 F

 Factory acceptance test
Acceptance testing carried out at the supplier’s facility, as opposed to a site acceptance test,

which is conducted at the client’s site.

 Failure
Deviation of the component or system under test from its expected result.

 Fault Injection
A technique used to improve test coverage by deliberately inserting faults to test different

code paths, especially those that handle errors and which would otherwise be impossible to

observe.

 Formal review
A review that proceeds according to a documented review process that may include, for

example, review meetings, formal roles, required preparation steps, and goals. Inspection is

an example of a formal review.

 Functional integration
An integration testing strategy in which the system is integrated one function at a time. For

example, all the components needed for the “search customer” function are put together and

tested one by one.

 Functional testing
Testing of the system’s functionality and behaviour; the opposite of non-functional testing.

 G

 Gray-box testing
Testing which uses a combination of white box and black box testing techniques to carry out

software debugging on a system whose code the tester has limited knowledge of.

 I

 IEEE 829
An international standard for test documentation published by the IEEE organization. The full

name of the standard is IEEE Standard for Software Test Documentation. It includes

templates for the test plan, various test reports, and handover documents.

 Impact analysis
Techniques that help assess the impact of a change. Used to determine the choice and extent

of regression tests needed.

 Incident
A condition that is different from what is expected, such a deviation from requirements or test

cases.

 Independent testing
A type of testing in which testers’ responsibilities are divided up in order to maintain their

objectivity. One way to do this is by giving different roles the responsibility for various tests.

You can use different sets of test cases to test the system from different points of view.

 Informal review
A review that isn’t based on a formal procedure.

 Installation test
A type of test meant to assess whether the system meets the requirements for installation and

uninstallation. This could include verifying that the correct files are copied to the machine and

that a shortcut is created in the application menu.

https://reqtest.com/testing-blog/test-coverage-metrics/
https://reqtest.com/testing-blog/functional-vs-non-functional-testing/

LCCS National Workshop 5 Workbook

 46

 Integration testing
A test level meant to show that the system’s components work with one another. The goal is

to find problems in interfaces and communication between components.

 Internal supplier
Developer that belongs to the same organization as the client. The IT department is usually

the internal supplier. See also external supplier.

 ISTQB
International Software Testing Qualifications Board. ISTQB is responsible for international

programs for testing certification.

 Iteration
A development cycle consisting of a number of phases, from formulation of requirements to

delivery of part of an IT system. Common phases are analysis, design, development, and

testing. The practice of working in iterations is called iterative development.

 L

 Load testing
A type of performance testing conducted to evaluate the behaviour of a component or system

with increasing load, e.g. numbers of concurrent users and/or numbers of transactions. Used

to determine what load can be handled by the component or system. See also performance

testing and stress testing.

 M

 Maintainability
A measure of how easy a given piece of software code is to modify in order to correct defects,

improve or add functionality.

 Maintenance
Activities for managing a system after it has been released in order to correct defects or to

improve or add functionality. Maintenance activities include requirements management,

testing, development amongst others.

 Module testing
See component testing.

 N

 Naming standard
The standard for creating names for variables, functions, and other parts of a program. For

example, strName, sName and Name are all technically valid names for a variable, but if you

don’t adhere to one structure as the standard, maintenance will be very difficult.

 Negative testing
A type of testing intended to show that the system works well even if it is not used correctly.

For example, if a user enters text in a numeric field, the system should not crash.

 Non-functional testing
Testing of non-functional aspects of the system, such as usability, reliability, maintainability,

and performance.

 NUnit
An open source framework for automated testing of components in Microsoft .Net

applications.

 O

 Open source
A form of licensing in which software is offered free of charge. Open source software is

frequently available via download from the internet, from www.sourceforge.net for example.

 Operational testing
Tests carried out when the system has been installed in the operational environment (or

simulated operational environment) and is otherwise ready to go live. Intended to test

LCCS National Workshop 5 Workbook

 47

operational aspects of the system, e.g. recoverability, co-existence with other systems and

resource consumption.

 P

 Pair programming
A software development approach where two developers sit together at one computer while

programming a new system. While one developer codes, the other makes comments and

observations, and acts as a sounding board. The technique has been shown to lead to higher

quality thanks to the de facto continuous code review – bugs and errors are avoided because

the team catches them as the code is written.

 Pair testing
Test approach where two persons, e.g. two testers, a developer and a tester, or an end-user and

a tester, work together to find defects. Typically, they share one computer and trade control of

it while testing. One tester can act as observer when the other performs tests.

 Performance testing
A test to evaluate whether the system meets performance requirements such as response time

or transaction frequency.

 Positive testing
A test aimed to show that the test object works correctly in normal situations. For example, a

test to show that the process of registering a new customer functions correctly when using

valid test data.

 Postconditions
Environmental and state conditions that must be fulfilled after a test case or test run has been

executed.

 Preconditions
Environmental and state conditions that must be fulfilled before the component or system can

be tested. May relate to the technical environment or the status of the test object. Also known

as prerequisites or preparations.

 Prerequisites
See preconditions.

 Priority
The level of importance assigned to e.g. a defect.

 Professional tester
A person whose sole job is testing.

 Program testing
See component testing.

 Q

 Quality
The degree to which a component, system or process meets specified requirements and/or

user/customer needs and expectations.

 Quality assurance (QA)
Systematic monitoring and evaluation of various aspects of a component or system to

maximize the probability that minimum standards of quality are being attained.

 R

 Record and playback tool
Test execution tool for recording and playback of test cases often used to support automation

of regression testing. Also known as capture/playback.

 Regression testing
A test activity generally conducted in conjunction with each new release of the system, in

order to detect defects that were introduced (or discovered) when prior defects were fixed.

Compare to Re-testing.

https://reqtest.com/testing-blog/regression-testing-types-techniques-tools/

LCCS National Workshop 5 Workbook

 48

 Release
A new version of the system under test. The release can be either an internal release from

developers to testers, or release of the system to the client. See also release management.

 Release testing
A type of non-exhaustive test performed when the system is installed in a new target

environment, using a small set of test cases to validate critical functions without going into

depth on any one of them. Also called smoke testing – a funny way to say that, as long as the

system does not actually catch on fire and start smoking, it has passed the test.

 Requirements management
A set of activities covering gathering, elicitation, documentation, prioritization, quality

assurance and management of requirements for an IT system.

 Re-testing
A test to verify that a previously-reported defect has been corrected.

 Retrospective meeting
A meeting at the end of a project/a sprint during which the team members evaluate the work

and learn lessons that can be applied to the next project or sprint.

 Review
A static test technique in which the reviewer reads a text in a structured way in order to find

defects and suggest improvements. Reviews may cover requirements documents, test

documents, code, and other materials, and can range from informal to formal.

 Reviewer
A person involved in the review process that identifies and documents discrepancies in the

item being reviewed. Reviewers are selected in order to represent different areas of expertise,

stakeholder groups and types of analysis.

 Risk
A factor that could result in future negative consequences. Is usually expressed in terms of

impact and likelihood.

 Risk-based testing
A structured approach in which test cases are chosen based on risks. Test design techniques

like boundary value analysis and equivalence partitioning are risk-based. All testing ought to

be risk-based.

 S

 Scalability testing
A component of non-functional testing, used to measure the capability of software to scale up

or down in terms of its non-functional characteristics.

 Scenario
A sequence of activities performed in a system, such as logging in, signing up a customer,

ordering products, and printing an invoice. You can combine test cases to form a scenario

especially at higher test levels.

 Scrum
An iterative, incremental framework for project management commonly used with agile

software development.

 Session-based testing
An approach to testing in which test activities are planned as uninterrupted, quite short,

sessions of test design and execution, often used in conjunction with exploratory testing.

 Severity
The degree of impact that a defect has on the development or operation of a component or

system.

 Site acceptance testing (SAT)
Acceptance testing carried out onsite at the client’s location, as opposed to the developer’s

location. Testing at the developer’s site is called factory acceptance testing (FAT).

 Smoke testing
See release testing.

LCCS National Workshop 5 Workbook

 49

 State transition testing
A test design technique in which a system is viewed as a series of states, valid and invalid

transitions between those states, and inputs and events that cause changes in state.

 Static testing
Testing performed without running the system. Document review is an example of a static

test.

 Stress testing
Testing meant to assess how the system reacts to workloads (network, processing, data

volume) that exceed the system’s specified requirements. Stress testing shows which system

resource (e.g. memory or bandwidth) is first to fail.

 Supplier
The organization that supplies an IT system to a client. Can be internal or external. Also

called vendor. Contrast with Client.

 System
The integrated combination of hardware, software, and documentation.

 System integration testing
A test level designed to evaluate whether a system can be successfully integrated with other

systems (e.g. that the tested system works well with the finance system). May be included as

part of system-level testing, or be conducted as its own test level in between system testing

and acceptance testing.

 System testing
Test level aimed at testing the complete integrated system. Both functional and non-functional

tests are conducted.

 T

 Test automation
The process of writing programs that perform test steps and verify the result.

 Test basis
The documentation on which test cases are based.

 Test case
A structured test script that describes how a function or feature should be tested, including

test steps, expected results preconditions and postconditions.

 Test data
Information that completes the test steps in a test case with e.g. what values to input. In a test

case where you add a customer to the system the test data might be customer name and

address. Test data might exist in a separate test data file or in a database.

 Test driven development
A development approach in which developers writes test cases before writing any code.

 Test driver
A software component (driver) used during integration testing in order to emulate (i.e. to

stand in for) higher-level components of the architecture. For example, a test driver can

emulate the user interface during tests.

 Test environment
The technical environment in which the tests are conducted, including hardware, software,

and test tools. Documented in the test plan and/or test strategy.

 Test execution
The process of running test cases on the test object.

 Test level
A group of test activities organized and carried out together in order to meet stated goals.

Examples of levels of testing are component, integration, system, and acceptance test.

 Test log
A document that describes testing activities in chronological order.

https://en.wikipedia.org/wiki/Test_automation

LCCS National Workshop 5 Workbook

 50

 Test manager
The person responsible for planning the test activities at a specific test level. Usually

responsible for writing the test plan and test report. Often involved in writing test cases.

 Test object
The part or aspects of the system to be tested. Might be a component, subsystem, or the

system as a whole.

 Test plan
A document describing what should be tested by whom, when, how, and why. The test plan is

bounded in time, describing system testing for a particular version of a system, for example.

The test plan is to the test leader what the project plan is to the project manager.

 Test policy
A document that describes how an organization runs its testing processes at a high level. It

may contain a description of test levels according to the chosen life cycle model, roles and

responsibilities, required/expected documents, etc.

 Test process
The complete set of testing activities, from planning through to completion. The test process

is usually described in the test policy.

 Test report
A document that summarizes the process and outcome of testing activities at the conclusion

of a test period. Contains the test manager’s recommendations, which in turn are based on the

degree to which the test activities attained its objectives. Also called test summary report.

 Test run
A group of test cases e.g. all the test cases for system testing with owner and end-date.

 Tests on one test level are often grouped into a series of tests, i.e. two-week cycles consisting

of testing, re-testing, and regression testing. Each series can be a test run.

 Test script
Automated test case that the team creates with the help of a test automation tool. Sometimes

also used to refer to a manual test case, or to a series of interlinked test cases.

 Test specification
A document containing a number of test cases that include steps for preparing and resetting

the system. In a larger system you might have one test specification for each subsystem.

 Test strategy
Document describing how a system is usually tested.

 Test suite
A group of test cases e.g. all the test cases for system testing.

 Testing
A set of activities intended to evaluate software and other deliverables to determine if that

they meet requirements, to demonstrate that they are fit for purpose and to find defects.

 Third-party component
A part of an IT system that is purchased as a packaged/complete product instead of being

developed by the supplier/vendor.

 Top-down integration
An integration test strategy, in which the team starts to integrate components at the top level

of the system architecture.

 TPI
Test Process Improvement. A method of measuring and improving the organization’s

maturity with regard to testing.

 Traceability
Analysis of a prior chain of events, as well as the ability to follow an object such as a

document or a program through various versions. Traceability enables you to determine the

impact of a change in requirements, assuming you also develop a traceability matrix.

LCCS National Workshop 5 Workbook

 51

 U

 UML
Unified Modeling Language. A technique for describing the system in the form of use cases.

See also use case.

 Unit test
See component test.

 Unit test framework
Software or class libraries that enable developers to write test code in their regular

programming language. Used to automate component and integration testing.

 Usability
The capability of the software to be understood, learned, used and attractive to the user.

 Usability testing
A test technique for evaluating a system’s usability. Frequently conducted by users

performing tasks in the system while they describe their thought process out loud.

 Use case
A type of requirements document in which the requirements are written in the form of

sequences that describe how various actors in the system interact with the system.

 V

 V-model
A software development lifecycle model that describes requirements management,

development, and testing on a number of different levels.

 Validation
Tests designed to demonstrate that the developers have built the correct system. Contrast with

verification, which means testing that the system has been built correctly. A large number of

validation activities take place during acceptance testing.

 Verification
Tests designed to demonstrate that the developers have built the system correctly. Contrast

with validation, which means testing that the correct system has been built. A large number of

verification activities take place during component testing.

 Versioning
Various methods for uniquely identifying documents and source files, e.g. with a unique

version number. Each time the object changes, it should receive a new version number. See

also release management.

 W

 Waterfall model
A sequential development approach consisting of a series of phases carried out one by one.

This approach is not recommended due to a number of inherent problems.

 White box testing
A type of testing in which the tester has knowledge of the internal structure of the test object.

White box testers may familiarize themselves with the system by reading the program code,

studying the database model, or going through the technical specifications. Contrast with

black box testing.

(adapted from reqtest.com/blog/glossary-of-testing-terms and softwaretestinghelp.com)

https://reqtest.com/testing-blog/white-box-testing-example/

LCCS National Workshop 5 Workbook

 52

2. Boeing’s Software Testing Problem

Boeing’s 737 Max Software Outsourced to $9-an-Hour

Engineers
By

Peter Robison

June 28, 2019, 9:46 PM GMT+1

Planemaker and suppliers used lower-paid temporary workers

Engineers feared the practice meant code wasn’t done right

The cockpit of a grounded 737 Max 8 aircraft. Photographer: Dimas Ardian/Bloomberg

It remains the mystery at the heart of Boeing Co.’s 737 Max crisis: how a company renowned

for meticulous design made seemingly basic software mistakes leading to a pair of deadly

crashes. Longtime Boeing engineers say the effort was complicated by a push to outsource

work to lower-paid contractors.

The Max software -- plagued by issues that could keep the planes grounded months longer

after U.S. regulators this week revealed a new flaw -- was developed at a time Boeing was

laying off experienced engineers and pressing suppliers to cut costs.

Increasingly, the iconic American planemaker and its subcontractors have relied on

temporary workers making as little as $9 an hour to develop and test software, often from

countries lacking a deep background in aerospace -- notably India.

https://www.bloomberg.com/authors/ABocVkLODlA/peter-robison

LCCS National Workshop 5 Workbook

 53

Boeing 737 Max prepares for take off during testing in 2016.

Photographer: Mike Kane/Bloomberg

Related: Pilots Flagged Software Problems on Boeing Jets Besides Max

In offices across from Seattle’s Boeing Field, recent college graduates employed by the

Indian software developer HCL Technologies Ltd. occupied several rows of desks, said Mark

Rabin, a former Boeing software engineer who worked in a flight-test group that supported

the Max.

The coders from HCL were typically designing to specifications set by Boeing. Still, “it was

controversial because it was far less efficient than Boeing engineers just writing the code,”

Rabin said. Frequently, he recalled, “it took many rounds going back and forth because the

code was not done correctly.”

Boeing’s cultivation of Indian companies appeared to pay other dividends. In recent years, it

has won several orders for Indian military and commercial aircraft, such as a $22 billion one

in January 2017 to supply SpiceJet Ltd. That order included 100 737-Max 8 jets and

represented Boeing’s largest order ever from an Indian airline, a coup in a country dominated

by Airbus.

Based on resumes posted on social media, HCL engineers helped develop and test the Max’s

flight-display software, while employees from another Indian company, Cyient Ltd., handled

software for flight-test equipment.

(Source: Bloomberg.com)

https://www.bloomberg.com/news/articles/2019-06-27/boeing-pilots-flagged-software-problems-on-jets-besides-the-max
https://www.bloomberg.com/quote/HCLT:IN
https://www.bloomberg.com/quote/CYL:IN

LCCS National Workshop 5 Workbook

 54

Session 3

Algorithms

LCCS National Workshop 5 Workbook

 55

Section 1

Critical Reflection: Who am I to teach?

The following warmup activities are based on research work being carried out by Deirdre O’

Neill and Eilish McLoughlin at The Centre for Advancement of Science and Mathematics

Teaching and Learning (CASTeL) in Dublin City University.

Warmup Activity #1

Words that come to mind when you think about teenage girls.

Words that come to mind when you think about teenage boys.

LCCS National Workshop 5 Workbook

 56

According to 15 and 16-year-old girls ….

and teenage boys are …

In what ways does this differ from your own perception of teenagers?

LCCS National Workshop 5 Workbook

 57

Warmup activity #2

Read the following scenario once and complete the short survey that follows.

A builder, leaning out of the van, shouts “nice legs” to a nurse passing by. The same nurse

arrives at work, and casually mentions this to a senior doctor. The doctor said,” I’d never say

that”. The doctor has two grown up children who are 22 and 30. They get on very well. One

is a Sergeant in the Army; the other is training to be a beauty therapist. The doctor divorced

last year and is currently dating someone else.

Now complete the following survey. Tick the appropriate box for each statement …

 True

False
 Don’t

know

The builder was driving a van

The van was travelling quicker than the nurse

There was at least one man in the van

Not every man mentioned would shout ‘nice legs’

The doctor is no longer living with his wife

The doctor has a new girlfriend

The doctor’s son is in the army

The youngest child is training to be a beauty therapist

At some point a man spoke to a woman

At least two of the people mentioned are men

A woman was shouted at

LCCS National Workshop 5 Workbook

 58

The scenario did not provide enough information to answer True or False to any of the

statements.

Consider why you might have ticked either True or False for any of the above statements.

What is unconscious bias and why is it important?

LCCS National Workshop 5 Workbook

 59

What is Unconscious Bias?

- An automatic mental shortcut used to process information and make decisions quickly.

Unconscious Bias is …

 Natural

 A rapid categorisation of people

 Created by social influence

 Unintentional

 Used by everyone

 Most likely to be acted on when one is stressed or tired

 A bad thinking habit

Attributes that can trigger unconscious bias include gender, ethnicity, religion/belief,

perceived sexual orientation, attractiveness, disability, clothing, piercings/tattoos, hairstyle,

body language, accent, personality, friends/family, age, height etc.

Some of the factors that contribute to unconscious bias include …

 Media (traditional and social media)

 Language

 Socialisation (TV, School, Religion, Parents)

 Relationships

 Role Models

 Education

 Patterns in Society

What does unconscious bias have to do with algorithms?

LCCS National Workshop 5 Workbook

 60

Algorithmic Bias

In an age of Artificial Intelligence (AI) and machine learning fuelled by big data, unconscious

bias can be replicated, reinforced and amplified by algorithms. AI systems are not new

(recall Alan Turing’s Test from the 1950s and Eliza and other ‘expert systems’ from the

1960s and 70s) and although they have had a chequered history, there seems to be a

widespread general recognition that we are on the cusp of entering a ‘golden age’ of

machine learning and AI. This has the potential to have a profound impact on our lives and

society in general.

In today’s society ordinary everyday decisions traditionally made by humans are increasingly

being made by algorithms. In an ideal world we would like to think that these decisions would

be made free from any bias. However, this is not always the case – the use of algorithms to

sway voters’ opinions and influence the outcomes of elections in various jurisdictions around

the world in recent years have been widely documented.12

Algorithms are particularly well suited to processing unimaginably large amounts of data –

the kinds of data we have come to associate with the ‘infinite scroll’ through pages and

pages of social posts and product listings. But how do these algorithms decide to rank

content and on what basis do they place material at the top of these lists? Although very few

1 https://www.wired.com/story/the-great-hack-documentary/
2 https://www.theguardian.com/world/2018/dec/17/revealed-how-italy-populists-used-facebook-win-
election-matteo-salvini-luigi-di-maio

https://www.wired.com/story/the-great-hack-documentary/
https://www.theguardian.com/world/2018/dec/17/revealed-how-italy-populists-used-facebook-win-election-matteo-salvini-luigi-di-maio
https://www.theguardian.com/world/2018/dec/17/revealed-how-italy-populists-used-facebook-win-election-matteo-salvini-luigi-di-maio

LCCS National Workshop 5 Workbook

 61

know the precise answer to this question, it is generally agreed that these ‘recommender’

algorithms favour material that triggers emotional responses. Such systems which reward

reaction can lead to extremification, can be divisive, and can result in the polarisation of

groups and communities. The power of algorithms, and in particular their influence on our

own biases, should not be underestimated.

Further examples of algorithmic bias are unfortunately all too commonplace – can you

imagine how the Nigerian man, Chukwuemeka Afigbo felt when he discovered that the

automatic hand-soap dispenser did not work for black hands but recognised white hands

perfectly34? Or Jackie Alciné, an Africa American software engineer, who in 2015 discovered

that AI systems were tagging images of himself and his friends with the word ‘Gorrilas’5. And

it’s not just black hands and faces. In his book Coders: The Making of a New Tribe and the

Remaking of the World, Clive Thompson points out how algorithms trained in China, Japan

and South Korea have been found to struggle to recognise Caucasian faces but work well on

East Asian ones.

The root problem in many of these cases stems from the fact that the samples in the

underlying dataset used to train the AI were simply not broad enough. AI facial recognition

systems which have been trained using a disproportionate number of white faces are more

likely to recognise white faces with a greater degree of accuracy than they are to recognise

faces of another skin colour. As Hannah Fry points out in her book, Hello World: Being

Human in the Age of Algorithms, this can very quickly turn into a self-reinforcing or feedback

loop. In situations when the AI is designed to make decisions this can have particularly

devastating effects on the lives of individuals.

Take for example a policing algorithm used to predict locations where crime is likely to occur

based on statistics from where it has occurred in the past. It is not difficult to imagine how

such algorithms could lead to a lop-sided concentration of policing effort being directed

towards areas of ethnic minorities and social disadvantage, and how in turn, such an

algorithm has the potential to exacerbate certain biases.

Similarly, algorithms designed to ‘assist’ judges when it comes to handing down sentences

may well have been trained on pre-existing crime data that has already been ‘contaminated’

3 https://x.ai/blog/ai-lacks-intelligence-without-different-voices/
4 https://twitter.com/nke_ise/status/897756900753891328?lang=en
5 https://www.theguardian.com/technology/2015/jul/01/google-sorry-racist-auto-tag-photo-app

https://x.ai/blog/ai-lacks-intelligence-without-different-voices/
https://twitter.com/nke_ise/status/897756900753891328?lang=en
https://www.theguardian.com/technology/2015/jul/01/google-sorry-racist-auto-tag-photo-app

LCCS National Workshop 5 Workbook

 62

with bias. Both Thompson and Fry describe how independent research6 (ProPublica) found

that one such algorithm called COMPASS was almost twice as likely to label a black

defendant as getting a high-risk recidivist score than a white defendant (even though the

algorithm did not explicitly include race as a factor). Can you imagine the public outrage that

followed when the ProPublica report was published in 2016?

Of course there are those who would argue while they might not be biased themselves, the

algorithms are merely reflecting realities and therefore might be correct. What if racism or

sexism are accurate reflections of the world? Should we allow our AI algorithms to continue

to propagate biases or does AI present an opportunity to redress and reduce these biases

(an algorithmic version of political correctness, if you will)? Either way there is a moral choice

to be made – the decision by AI designers to ignore bias in their algorithms must surely be

considered every bit as moral as the opposite decision not to ignore bias is. Gladly, many

companies seem to be taking a proactive approach to dealing with bias. Twitter for example,

recently announced they are giving all employees training on unconscious bias7. In his book

The Master Algorithm, Pedro Domingos presents some more technical, but yet compelling,

techniques for addressing algorithmic bias.

Further Reading

https://ideal.com/unconscious-bias/

https://www.nytimes.com/2019/11/15/technology/algorithmic-ai-
bias.htmlhttps://www.pressreader.com/nigeria/daily-trust/20130705/282252368125380
https://www.propublica.org/series/machine-bias/p3

https://www.newscientist.com/article/2166207-discriminating-algorithms-5-times-ai-showed-
prejudice/#ixzz66GuztaaK

6 https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
7 https://www.irishtimes.com/business/technology/inside-twitter-how-the-company-deals-with-difficult-
conversations-1.4069288

https://ideal.com/unconscious-bias/
https://www.nytimes.com/2019/11/15/technology/algorithmic-ai-bias.html
https://www.nytimes.com/2019/11/15/technology/algorithmic-ai-bias.html
https://www.pressreader.com/nigeria/daily-trust/20130705/282252368125380
https://www.propublica.org/series/machine-bias/p3
https://www.newscientist.com/article/2166207-discriminating-algorithms-5-times-ai-showed-prejudice/#ixzz66GuztaaK
https://www.newscientist.com/article/2166207-discriminating-algorithms-5-times-ai-showed-prejudice/#ixzz66GuztaaK
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
https://www.irishtimes.com/business/technology/inside-twitter-how-the-company-deals-with-difficult-conversations-1.4069288
https://www.irishtimes.com/business/technology/inside-twitter-how-the-company-deals-with-difficult-conversations-1.4069288

LCCS National Workshop 5 Workbook

 63

Examples of algorithmic bias.

We will return to the topic of algorithms later – right now we turn our attention to our personal

and professional relationship with unconscious bias.

What does unconscious bias have to do with YOU?

LCCS National Workshop 5 Workbook

 64

What does Unconscious Bias have to do with YOU?

In our everyday work as teachers it is good to be aware of our own unconscious bias. This

awareness can help us to explain our actions and, if necessary, even tweak our own

behaviours so that our work as professional practitioners may be enhanced.

Unconscious bias can arise as a result of deeply help assumptions which we hold about the

world around us. These assumptions have been shaped over years of personal and

professional experiences, and sculpted by culture and society, they define our very identity.

Our values, attitudes and dispositions are inextricably bound with our unconscious biases

and assumptions.

Barbara Larieve points out that when we experience something new, the experience is not

pure. Everything is contextually bound and every new experience is filtered through this

context as well as our past experiences. (This can explain why two people might walk away

from the same exact same event such as a concert with entirely different opinions.)

It is reasonable to ask: How many of us assume, when we go into a class, that our students

will take the same meaning and significance from our own actions (e.g. what we say and do)

as we place on them ourselves?

Brookfield8 in his work on critical reflection talks about the importance of being aware of our

assumptions. In particular, he points out that sincerity of intention does not guarantee purity

8 Source: Becoming a Critically Reflective Teacher

LCCS National Workshop 5 Workbook

 65

of practice. John Dewey says ‘We do not learn from experience… we learn from reflecting

on experience’9.

It should make sense therefore that efforts to deepen our understanding of own biases and

assumptions are worth pursuing, and one way to do this is through critical reflection on a

habitual basis.

Critical reflection enables us to ‘check in’ on our own unexamined assumptions and the

impact they can have on our own work as professional practitioners.

Reflective practice is considered so important that it envelopes the entire Cosán Framework

as illustrated below.

But critical reflection is not easy. It is about challenging our biases, assumptions and

questioning our own existing practices. This can be uncomfortable for many as it involves

some or all of the following:

- exposing unexamined beliefs

- making visible our reflective loops

- facing deeply rooted personal attitudes concerning human nature, human potential and

human learning (human capital)

9 Source: Dewey, 1933, p.78

LCCS National Workshop 5 Workbook

 66

Efforts to become critically reflective involve negotiations of feelings of frustration, insecurity

and rejection. These feelings are all very common and occur naturally as part of any change

process. Dissonance is a natural part of professional learning and growth (Timperley). It is

not pleasant to question beliefs and discover that (at least some of) our long standing, ‘tried

and trusted’ approaches to teaching may have been misguided.

There is a nice quotation from Confucius shown below which captures the above sentiment.

Dewey identifies the need for the reflective practitioner to be open-minded,

wholehearted and responsible. Why do you think these three characteristics might be

necessary?

LCCS National Workshop 5 Workbook

 67

Reflection Activity Worksheet

In his book, The Courage To Teach, Parker J. Palmer asks the question: Who am I to teach?

In order to answer this, it might be helpful to critically reflect on your own values as a

teacher. A good starting point might be to question/identify your own unconscious biases

and assumptions.

What are my values as a teacher?

LCCS National Workshop 5 Workbook

 68

References/Further Reading

Brookfield, S. (2017). Becoming a Critically Reflective Teacher. 2nd Ed. San-Francisco:

Jossey-Bass

Dewey, J. (1933). How we think: A restatement of the relation of reflective thinking to the

educative process. New York: D.C. Heath and Company.

Hargreaves, A. & O’Connor, M.T. (2018). Solidarity with solidity: The case for collaborative

professionalism. Phi Delta Kappan

Larrivee, B., (2000) Transforming Teaching Practice: becoming the critically reflective

teacher, Reflective Practice, Vol. 1, No. 3

Palmer, Parker J. (1998). The courage to teach: exploring the inner landscape of a teacher's

life. San Francisco: Jossey-Bass

Schön, D. (1983). The Reflective Practitioner: How professionals think in action. London:

Temple Smith

Spalding, E. & Wilson, A. (2002). Demystifying reflection: A study of pedagogical strategies

that encourage reflective journal writing. Teachers College Record, 104, 1393-1421

Further information on models of reflection such as Brookfield’s four lenses (self, peers,

students and research), Gibbs’ Reflective Cycle and Rolfe et al’s Framework can be found

on the Teaching Council’s website at the following link:

https://www.teachingcouncil.ie/en/Teacher-Education/Teachers-learning-CPD-/Cosan-Support-
Materials/Reflecting-on-Professional-Learning/

https://www.teachingcouncil.ie/en/Teacher-Education/Teachers-learning-CPD-/Cosan-Support-Materials/Reflecting-on-Professional-Learning/
https://www.teachingcouncil.ie/en/Teacher-Education/Teachers-learning-CPD-/Cosan-Support-Materials/Reflecting-on-Professional-Learning/

LCCS National Workshop 5 Workbook

 69

Section 2

Introduction to Algorithms

In recent years the word algorithm has been slowly creeping out from behind the walls of

high-tech companies and the computer science lecture halls of universities and making its

way into the public gallery modern society. And the reason for this is simple: algorithms are

all around us. They have evolved to shape the way we live our daily lives, the way we think,

and perhaps most significantly, who we are. But what exactly is an algorithm?

An algorithm is a set of rules for getting a specific output from a specific input. Each step

must be so precisely defined that it can be translated into computer language and

executed by machine

Donald Knuth (1977)

It is difficult to think of any aspect of modern society that remains untouched by algorithms –

application areas include: arts, entertainment, education, banking, finance, insurance,

healthcare, medicine, media, social media, travel, tourism, crime, justice, transport, politics,

public services, communications, retail, security, manufacturing, military and much, much,

more. Sales, marketing, sports, games, astronomy, exploration, science and technology,

construction, engineering, agriculture, food, research and development. The list is endless.

There are algorithms to recommend our next purchases, the next book to read, the next

song to listen to, the next YouTube video to watch – algorithms to maintain playlists, find the

perfect partner, schedule our busy lives, pay for and deliver our shopping and so on ad

infinitum.

The ubiquitous nature of algorithms and their influence on modern life should be patently

clear. And for this reason alone the benefits of having a general understanding of the way

they operate should also be clear. Simply put, life can be made easier when one has some

level of understanding about the algorithms that are used to drive and support it.

When it comes to the study of algorithms (as is the case with Leaving Certificate Computer

Science) their importance takes on an even greater significance. The study of algorithms

enables us to provide opportunities for students to ask questions that are fundamental to

computer science. Questions such as …

 What is computable?

 Does an algorithm guarantee a correct solution?

LCCS National Workshop 5 Workbook

 70

 How optimal is this solution?

 What is the worst case time complexity?

According to Knuth10 an algorithm has the following five important features:

1. Finiteness: An algorithm must always terminate after a finite number of steps. A

procedure that has all the characteristics of an algorithm except that it possibly lacks

finiteness may be called a computational method e.g. reactive processes

2. Definiteness: Each step must be precisely defined; the actions to be carried out must be

rigorously and unambiguously specified for each case. Algorithms that are expressed

using natural languages give rise to the possibility of ambiguity. To get around this

difficulty, formally defined programming languages or computer languages are designed

for specifying algorithms. An expression of a computational method in a computer

language is called a program.

3. Input: An algorithm has zero or more inputs, taken from a specified set of objects:

quantities that are given to it initially before the algorithm begins, or dynamically as the

algorithm runs.

4. Output: An algorithm has one or more outputs, which have a specified relation to the

inputs.

5. Effectiveness: All operations to be performed must be sufficiently basic that they can be

done exactly and in finite length.

A less formal definition of ‘algorithm’ is a step-by-step procedure for solving a problem or

accomplishing some end.11 According to this definition ordinary everyday instructions such

as those found in recipe books or any set of instructions (e.g. making a cup of coffee,

furniture flat-pack assembly instructions, Lego, changing the oil in a car etc.) could be called

algorithms. No computation necessary - what do you think? This definition tells us that

basically, if you can clearly describe how to do something, then you can make an algorithm

for it.

It is worth noting that there is a big difference between inventing an algorithm and using it.

Inventing an algorithm can be very difficult – there can be multiple solutions to the same

10 Source: Knuth, D The Art of Computer Programming (Vol. 1, Fundamental Algorithms, 3rd ed.)
11 https://www.merriam-webster.com/dictionary/algorithm

https://www.merriam-webster.com/dictionary/algorithm

LCCS National Workshop 5 Workbook

 71

problem - and the use of computational thinking skills is essential, whereas using an

algorithm is just a matter of following the algorithm’s instructions.

 Algorithms are way of capturing intelligence and sharing it with others

 They provide general solutions to problems (but some problems are so hard that they

cannot be solved by algorithms e.g. The Halting Problem)

 They can be expressed in a variety of different ways – programs, pseudo-code,

flowcharts etc.

 Common elements of algorithms include data acquisition, computation, sequence,

selection, iteration and a means to report the output.

 There is a close relationship between algorithms and data structures.

 The essential features of all algorithms are correctness and effectiveness

Rule Based Algorithms vs. Machine Learning Algorithms

The distinction between rule-based algorithms and AI/machine learning algorithms is very

important and therefore worth discussing.

Rule based algorithms are the traditional algorithms that are written by humans typically

using programming constructs such as sequence, selection and iteration. These are the

classic algorithms that can be debugged and tested, and behave in a deterministic fashion.

We will see later that these type of algorithms can be studied, verified and rigorously

analysed.

Although many rule-based algorithms pre-date computer algorithms (Euclid’s algorithm for

finding the greatest common divisor of two numbers and The Babylonian square-root

algorithm (sometimes called Hero’s method) are just two examples), there can be little doubt

that since the 1950s and the rise in popularity of computers there has been somewhat of an

explosion of interest and the development of new rule-based algorithms. This is largely down

to the fact that because of their speed and reliability, computers are an ideal tool for running

algorithms.

In the next section we will be taking a detailed look at a variety of searching and sorting

algorithms (i.e. linear and binary searches, simple (selection) sort, insertion sort, bubble sort

and quicksort algorithms) but there are quite literally thousands of other rule based

algorithms too. Some classic examples include Google’s Page Rank algorithm (written by

LCCS National Workshop 5 Workbook

 72

Larry Page and Sergey Brin), Dijkstra’s shortest path algorithm, Cooley-Tukey algorithm

(used to break down signals into frequencies), Moore’s Algorithm (used for scheduling and

resource allocation) and a wide variety of Greedy (heuristic) algorithms just to name a few.

All operating systems and the vast majority of application software are built using many of

these rule-based algorithms. Common examples include word-processing, spreadsheet and

database packages, web browsers, graphic/multimedia systems. Other business examples

include Customer Relationship Management (CRM) systems, Point-Of-Sale (POS) and stock

control systems, Automated Teller Machine (ATM) systems, sales, purchasing, invoicing and

accounting systems. Online systems we use to communicate with each other, purchase

goods, play games, book cinema or concert tickets, holidays, taxis, flights, hotels, and

stream movies and music to our devices are all built from rule-based algorithms.

Machine learning algorithms (and AI) differ from rule-based algorithms in a number of

respects. These type of algorithms are designed so that they can be ‘trained’ over time using

a combination of very large volumes of data and human input. These inputs are used by the

algorithms to build large and complex mathematical models which are then used to make

inferences and predictions. Unlike rule-based algorithms, machine learning algorithms are

characterised by a statistical randomness that gives rise to non-deterministic (stochastic)

behaviours.

Machine learning algorithms (and AI) were discussed earlier in the section on unconscious

bias and are the subject of much debate at the moment. It is probably fair to claim that the

recent surge in popularity of machine-learning algorithms is being met by many people with

a mix of excitement and a certain degree of trepidation – excitement at the positive potential

they hold for society, but trepidation caused by the inability in certain cases by their

designers to explain their behaviour.

For an excellent introduction to algorithms watch the BBC4 documentary, The Secret

Rules of Modern Living12 produced and directed by David Briggs and presented by

Professor Marcus du Sautoy. A nice worksheet to accompany the video is available at the

link referenced below. 13

12 https://www.youtube.com/watch?v=kiFfp-HAu64.
13 https://csilvestriblog.files.wordpress.com/2015/09/the-secret-rules-of-modern-living-algorithms.pdf

https://www.youtube.com/watch?v=kiFfp-HAu64
https://csilvestriblog.files.wordpress.com/2015/09/the-secret-rules-of-modern-living-algorithms.pdf

LCCS National Workshop 5 Workbook

 73

Activity #1: Introduction to Algorithms

Read the scenario below carefully and then watch the video The Secret Rules of Modern

Living, Marcus Du Sautoy (https://www.youtube.com/watch?v=kiFfp-HAu64) from 23:44 to

26:53

The Stable Marriage Problem (David Gale and Lloyd Shapely, 1962 and later Alvin Roth)

Suppose you had a group of men and a group of women who wanted to get married. The

goal is to find stable matches between two sets of people who have different preferences

and opinions on who is their best match.

The central concept is that the matches should be stable: There should be no two people

who prefer each other to the partners they actually got e.g. an unstable match would be if

Mary and John like each other better than their partners. The problem is to develop a

formula to pair everyone off as happily as possible.

Sometimes solutions to problems can have varied (and unexpected) applications.

In what other contexts do you think the Gale-Shapley algorithm could be applied?

https://www.youtube.com/watch?v=kiFfp-HAu64

LCCS National Workshop 5 Workbook

 74

Discussion

It is interesting to note how algorithmic solution(s) to some famous (and not so famous)

problems have found applications in entirely different (and unexpected) contexts.

The original problem context for the Gale-Shapley algorithm was college admissions i.e. how

to match students to colleges so that everyone got a place, but more importantly were happy

even if they didn’t get their first choice. However, it is quite likely that some of the following

applications of solutions to the Stable Marriage Problem were not anticipated in 1962 when

Gale-Shapley first posed the problem and invented its solution:

- As recently as 2004 Alvin Roth adapted the Gale-Shapley algorithm to help transplant

patients find donors (it is estimated that thousands of lives being saved as a result14).

Both Shapley and Roth received the Nobel Prize in 2012 for this work. (David Gale

passed away in 2008)

- In the 1990s, Roth, with backing from the National Science Foundation, began looking at

the National Residency Match Program (NRMP), a system that assigns new doctors to

hospitals around the country (USA). The NRMP was struggling because new doctors

and hospitals were often both unsatisfied with its assignments. Roth used Gale and

Shapely’s work to reshape the NRMP matching algorithm so that it produced matches

that were more stable.

- Another application was found in assigning (client) users to servers in a large distributed

Internet service.

- General solutions to the SMP are also applied in the areas of in economics, stock

markets and marketing recommendation systems (basically any scenario which involves

supply and demand or matching sellers to buyers).

Can you think of any other contexts where solutions to the Stable Marriage Problem

could be applied? What about love?

14 https://medium.com/@UofCalifornia/how-a-matchmaking-algorithm-saved-lives-2a65ac448698

http://www.goldengooseaward.org/awardees/zfh0utmzft7uewzc3lscuvdp21ogw2
http://www.nobelprize.org/nobel_prizes/economic-sciences/laureates/2012/popular-economicsciences2012.pdf
https://medium.com/@UofCalifornia/how-a-matchmaking-algorithm-saved-lives-2a65ac448698

LCCS National Workshop 5 Workbook

 75

Further Work

This work can be carried out in your own time following the workshop.

Consider potential areas of application for solutions to the following problems/scenarios.

Scenario 1: The Secretary Problem (aka The Optimal Stopping Problem)

Suppose that you are in an ice cream parlour with a hundred different flavours of ice

cream: chocolate-mint, peanut butter, pepper, coffee-chocolate-garlic, and many more!

Because you do not know any of these strange combinations, the friendly ice cream

vendor allows you to taste some! You can try a little spoon of a kind of ice cream and have

to decide whether you want a full serving or want to eat something else. Unspoken rules

of politeness say that if you have declined a flavour to try a new one, you can never

choose that previous flavour again. Which strategy will lead to the best bowl of ice cream?

Scenario 2: Two Machine Scheduling

When you wash your clothes they have to pass through the washer and the dryer in

sequence, and different loads will take different amounts of time in each. A heavily soiled

load might take longer to wash but the usual time to dry; a large load may take the usual

time to wash but a longer time to dry. If you have several loads of laundry to do on the

same day, what’s the best way to do them?

(This problem originated from a mathematician called Selmar Johnson. The scenario
Johnson examined was bookbinding, where each book needs to be printed on one
machine and then bound on another. Problem is to minimise the total time for the two
machines to complete all their jobs.)

Scenario 3: The Elevator Algorithm (aka Karp’s algorithm or Knuth’s One Tape Sort15)

How would you design an elevator algorithm that is fair, both to its passengers and the

waiting public?

15 Knuth, Donald, The Art Of Computer Programming. Vol 3, pp 357-360. ”One tape sorting”

LCCS National Workshop 5 Workbook

 76

Scenario 4: The Travelling Salesman Problem (TSP)

Given a list of cities and the distances between each pair of cities, what is the shortest

possible route that visits each city once, and only once, and returns to the origin city?

Scenario 5: The Bridges of Königsberg

The city of Königsberg in Prussia (now Kaliningrad, Russia) was set on both sides of the

Pregel River, and included two large islands which were connected to each other, or to the

two mainland portions of the city, by seven bridges. Can you devise a walk through the

city that would cross each of those bridges once and only once?

Solutions involving either of the following are unacceptable:

- reaching an island or mainland bank other than via one of the bridges, or

- accessing any bridge without crossing to its other end

There are many more interesting scenarios/problems to those presented on the previous

pages. You are encouraged to research some for yourself and use the space provided on

the next page to start recording your findings. Here are some ideas to get you started:

- Discuss methods for pairing socks!

- What about washing dishes?

- What is The Dining Philosopher Problem?

- Discuss the nature of the following two scenarios (are they the same?):

1) Suppose we have n tasks to complete, each with a time estimate – how can we delegate

the tasks to two people as evenly as possible?

2) Suppose you needed to divide a large number or assorted crates into two equal weight

groups?

Browse to https://classicproblems.com/ to read more interesting Computer Science problems

and bolster your knowledge of algorithms in the process.

https://en.wikipedia.org/wiki/K%C3%B6nigsberg
https://en.wikipedia.org/wiki/K%C3%B6nigsberg
https://en.wikipedia.org/wiki/Kingdom_of_Prussia
https://en.wikipedia.org/wiki/Kaliningrad
https://en.wikipedia.org/wiki/Russia
https://en.wikipedia.org/wiki/Pregolya
https://classicproblems.com/

LCCS National Workshop 5 Workbook

 77

LCCS National Workshop 5 Workbook

 78

Section 3

Searching and Sorting Algorithms

Introduction

Sorting and searching are at the very heart of what computers do. Most of us can think of

situations from our past where we needed to search for something e.g. a name in a contact

list, or a song from a playlist. Maybe even an email or a book from a library or a product from

an online catalogue. How many times do we use a search engine in a single day?

In today’s digital world searching and sorting algorithms are crucial for efficient retrieval and

processing of large volumes of data. Without question they are among the most important

and the most frequently used algorithms in computer science. In fact, it is estimated that

over 25% of computing time is spent on sorting with some installations spending more than

50% of their time sorting16. From an environmental perspective that can add up to a lot of

energy and greenhouse gases.

Many of us will appreciate that there are classes of algorithms that, for a given input, will

compute all possible outputs. Sometimes the amount of output can run well beyond orders of

magnitude that humans are capable of dealing with. Consider as examples algorithms for

finding the shortest possible route between two points or an algorithm to compute all the

possible winning moves from this point in a chess game. Other classes of algorithms work

by processing very large amounts of input data just to generate a relatively small amount of

output. For example, your favourite social media application might use an algorithm which

trawls through its database of millions (and even billions!) of registered users just so that it

can present them to you as suggested ‘friends’ to connect with or to follow. The presentation

of the results of these algorithms in sorted order is often as important as the underlying

algorithm that was used to gather them in the first place.

Sorting makes it possible to view the same underlying data in multiple ways. For example,

products may be presented to an online user in order of price or some other metric such as

rating. A football league table sorted in alphabetic order by team would probably look very

different to the same table sorted on points. It is a combination of the frequency of the types

of computations referred to above, and the sheer volume of the data that make sorting and

searching algorithms so important.

16 Source: Fundamentals of Data Structures in Pascal (Horowitz and Shani, Pg. 335)

LCCS National Workshop 5 Workbook

 79

Finally, and also very importantly, as we will see later when we study the binary search

algorithm, sorting makes it possible to search very large data sets in very little time. They

also enable easy detection of duplicate values and facilitate the comparison of lists.

Research Exercise

This exercise can be carried out in your own time following the workshop.

LCCS National Workshop 5 Workbook

 80

So, what do we mean by sorting?

An algorithm that maps the following input/output pair is called a sorting algorithm:

Input: A list or array, 𝐴, that contains 𝑛 orderable elements (often called keys):

𝐴[0, 1, . . . , 𝑛 − 1].

Output: A sorted permutation of 𝐴, called 𝐵, such that

𝐵[0] ≤ 𝐵[1] ≤ ⋯ ≤ 𝐵[𝑛 − 1].

For example, [𝑎, 𝑏, 𝑐, 𝑑] is sorted alphabetically, [1,2,3,4,5] is a list of integers sorted in

increasing order, and [5,4,3,2,1] is a list of integers sorted in decreasing order.

By convention, empty lists and lists consisting of only one element (singletons) are always

sorted. This is a key point for the base case of many sorting algorithms.

When the (sorted) output occupies the same memory as was used to hold the original

(unsorted) input the sorting is said to have been done in place. This is a desirable feature for

sorting algorithms to have because it means they have little or no additional space

requirements (on top of the size of the list that is being sorted).

What is searching?

An algorithm that maps the following input/output pair is called a search algorithm:

Input: An array, 𝐴, that contains 𝑛 orderable elements (often called keys) 𝐴[0, 1, . . . , 𝑛 − 1]

and some target value commonly referred to as an argument.

Output: If the argument is found in A it is conventional to return its zero-based positional

offset (i.e. the index) and if the argument is not found some implementations return the

length of the list while others return −1. (Either of these two outputs can be used to indicate

that the argument doesn’t exist in A.)

For example, a search to find argument ‘𝑐’ in the list L, [𝑑, 𝑎, 𝑐, 𝑏] would return 2 and a search

to find argument ‘𝑧’ (or any other value not on L) in the same list would return either 4 or −1.

LCCS National Workshop 5 Workbook

 81

For any given problem, it is quite possible that there is more than one algorithm that

represents a correct solution. Two good examples of this are the problems of searching

sorting. Dozens of different algorithms have been written to solve this problem. LCCS names

these six.

For the purpose of this workshop we will confine our attention to searching and sorting

numeric data (as opposed to alphanumeric or data of any other datatype) that are stored

using the list data structure (aka an array).

When we come to look at the implementation of some of these algorithms we will find it is

necessary to have a working knowledge of lists i.e. indexing and traversals, the use of

comparison operators (the law of trichotomy and the law of transitivity), and how to

swap/exchange values. It will also be necessary to have a knowledge of iteration and useful

to have an understanding of recursion.

LCCS National Workshop 5 Workbook

 82

List Traversal and The Swap Operation

A more detailed description of the various search and sort algorithms is presented in the

following pages. In the workshop we skip directly to Activity # 2.

LCCS National Workshop 5 Workbook

 83

A Simple Sort Algorithm

We will start our discussion of sort algorithms with this presentation of what is perhaps the

simplest sort of all.

Let’s consider the process of sorting the seven unsorted cards shown here.

The desired output is:

One approach is to start by finding the smallest card in the unsorted list and moving it into a

new list. The smallest card is 4 and this is moved to the new list as illustrated.

Original (Unsorted) List

New (Sorted) List

We proceed by moving the next smallest card (i.e. 5) from the original list and adding it to

the end of the new list.

Original (Unsorted) List

New (Sorted) List

This process of finding the smallest card from the unsorted list and moving it to the end of

the sorted list continues until there are no cards left in the original list and all the cards are

sorted.

LCCS National Workshop 5 Workbook

 84

In general, the simple sort works by repeatedly selecting the smallest item from an unsorted

list and moving it to a second list. Once all the items have been removed from the unsorted

list, the second list will contain the items in sorted order.

The sequence of steps is as follows:

1. Initialise an unsorted list

2. Initialise an empty sorted list

3. Repeat as long as there are items in the unsorted list

4. Find the smallest item

5. Move the smallest item to the sorted list

6. Stop

These steps can be translated into the following Python code.

A Very Simple Sort v1

unsorted_list = [9, 6, 10, 4, 8, 5, 7] # the list to be sorted

sorted_list = [] # the initial (empty) sorted list

Loop over every element in the unsorted list

for i in range(len(unsorted_list)):

 smallest = min(unsorted_list) # min returns the smallest

 sorted_list.append(smallest) # append the smallest to the sorted list

 unsorted_list.remove(smallest) # remove the smallest from unsorted_list

It is important to note that the above code exploits the min built-in function to find the

smallest item. The actual algorithm for min involves comparing each element to every other

element in the list.

A note on performance

The above technique it is not considered to be a very efficient algorithm. The main reason

for this is that it requires twice as much memory as the size of the original sorted list i.e. in

order to sort a list of size N, the algorithm the space requirements are 2N. This becomes

impractical when the number of items in the list becomes large.

LCCS National Workshop 5 Workbook

 85

The Simple (Selection) Sort

The selection sort algorithm is a variation of the algorithm just presented with one important

difference – the items are sorted ‘in place’ i.e. without the need for a second list.

The algorithm maintains a marker such that at all times:

- all items to the right of the marker are unsorted

- all items to the left of the marker have been sorted.

This example shows an unsorted list with the marker in its initial position pointing to the first

item in the list.

The algorithm proceeds by finding the smallest item to the right of the marker – in this case 4

– and then swapping this item with the item at the marker. The marker is then advanced to

the next position as illustrated.

In the next pass the smallest item (to right of the marker, i.e.5) is swapped with the item

pointed to by the marker (i.e. 6). This leaves the list looking like this:

LCCS National Workshop 5 Workbook

 86

This process continues in a systematic fashion until all the items in the list have been

processed.

6 has just been swapped with 10. The next swap will be 9 and 7.

9 has just been swapped with 7 and the marker is advanced to 8 – since no item to the right

of the marker is smaller than 8 the list will remain unchanged.

The list remains unchanged and the marker is advanced to 10.

9 is swapped with 10 and the list is sorted.

LCCS National Workshop 5 Workbook

 87

The steps in the selection sort algorithm are as follows:

1. Initialise an unsorted list

2. Initialise a marker

3. Loop across every list item

4. Find the minimum item to the right of the marker

5. Swap this item with the item at the marker

6. Advance the marker to the right one position

7. Stop

These steps are annotated in the Python implementation shown here.

Simple (Selection) Sort v1

1. Initialise an unsorted list

aList = [9, 6, 10, 4, 8, 5, 7]

2. Initialise a marker

marker = 0

3. Traverse through all list items

while marker < len(aList):

 # 4. Find the minimum item to the right of the marker

 index_of_min = marker

 for j in range(marker+1, len(aList)):

 if aList[index_of_min] > aList[j]:

 index_of_min = j

 # 5. Exchange the smallest item with the item at the marker

 temp = aList[marker] # save the item at the marker

 aList[marker] = aList[index_of_min] # copy 1

 aList[index_of_min] = temp # copy 2

 # 6. Advance the marker to the right by 1 position

 marker = marker+1

7. Stop

- The values to be sorted are stored in a list called aList.

- The variable marker is used to store the index that will contain the next item to be

sorted. All items to the left of marker are sorted and all items to the right of marker are

yet to be processed.

LCCS National Workshop 5 Workbook

 88

- The variable index_of_min is the index of the smallest item to the right of the marker.

The item at this position will be swapped with the item at the marker – this is the heart of

the algorithm.

The illustration below depicts the changing values of marker and index_of_min as the

algorithm sorts a list of 7 items in aList.

Exercises – Simple (Selection) Sort

1. Use the simple (selection) sort algorithm to sort the list [7, 8, 5, 2, 4, 6, 3] shown below.

(Fill in the blanks in the same manner as above.)

LCCS National Workshop 5 Workbook

 89

2. Perform a simple (selection) sort on the face values of the following cards.

LCCS National Workshop 5 Workbook

 90

Insertion Sort

We can develop our understanding of the insertion sort as follows:

- a list with one item is already sorted.

- a list with two items can be sorted by sorting the second item relative to the first. If the

second item is greater than the first, the two items are already sorted and nothing further

needs to be done; otherwise we obtain our sorted list by swapping the two items.

- a list with three items can be sorted by sorting the first two items (as just described) and

then sorting the third item relative to the first two.

- a list with four items can be sorted by sorting the first three items (as just described) and

then sorting the fourth item relative to the first three.

- And so on.

Example

Let’s say we were asked to sort the list of numbers shown below in ascending order.

The desired output is:

The insertion sort starts at the leftmost item. It sets a marker between the first and second

item. Everything to the left of the marker is always sorted and everything to the right of the

marker remains to be sorted. This is illustrated as follows:

The algorithm proceeds as follows until the entire list is sorted:

1. Select the first item from the unsorted list (in this case 7)

2. Insert the selected item into the correct position within the sorted this (this is done by

swapping this item to the left until it arrives at the correct position)

3. Advance the marker to the right by one position

LCCS National Workshop 5 Workbook

 91

After following the three instructions just outlined the 7 remains in the same positon (as it is

already sorted relative to 5) and the marker is advanced to the right by 1. The list now looks

like this:

The next item to sort is 3 (because this is the first item in the unsorted list) and so 3 is

inserted into the sorted list. This is what the list looks like after 3 has been inserted. The next

item to insert will be 6.

By this point you may be wondering how, on each pass, the selected item gets inserted into

its correct position. We’ll come to this soon – for the moment it’s important to grasp the outer

loop which iterates over each item in the list.

At this point 6 has been inserted into the sorted list and the next item to sort is 2.

This is what the list looks like after 2 has been inserted. The next item to sort is 9.

Since 9 is already sorted relative to the list on its left the list will remain unchanged. We just

advance the marker to the right by one position and consider the next item to sort which is 1.

LCCS National Workshop 5 Workbook

 92

This is what the list looks like before 1is inserted into its correct (sorted) position.

This is what the list looks like after 1 has been inserted. The next item to sort is 8.

This is what the list looks like after 8 has been inserted. The next (and final) item to sort is 4.

This is what the list looks like after 4 has been inserted. There are no more items to the right

of the marker and so the algorithm terminates.

Because we have maintained the list to the left of the marker in a sorted state throughout,

we can safely conclude that this final list is sorted.

Reflection Exercise

1. How many insertions do you think would be necessary if the initial list was

a) already sorted e.g. 1, 2, 3, 4, 5

b) in reverse order e.g. 5, 4, 3, 2, 1

2. Generalise your answer to 1 for a list of any size (i.e. a list of size 𝑛.)

LCCS National Workshop 5 Workbook

 93

Inserting the item to its correct position

Before we look at an implementation of the insertion sort, it is helpful to understand how step

2 of the algorithm works. Step 2 says insert the selected item into the correct position within

the sorted this. How do we do this?

Consider the transition (shown here) that takes place in the final pass of our example. The

question is: how does the 4 get inserted into the correct position?

From:

To:

The answer is: 4 is repeatedly swapped back with all larger numbers to its left. The step-by-

step sequence of swaps are illustrated below:

Start

Swap 9 and 4

Swap 8 and 4

Swap 7 and 4

Swap 6 and 4

Swap 5 and 4

Stop

The algorithm for this swap sequence is shown in the code below.

 # repeatedly swap a[j] with larger numbers to its left

 while (a[j] < a[j-1] and j>0):

 temp = a[j]

 a[j] = a[j-1]

 a[j-1] = temp

 j = j-1

LCCS National Workshop 5 Workbook

 94

The full Python implementation of the insertion sort is shown below:

1. Initialise an unsorted list

theList = [5, 7, 3, 6, 2]

2. Initialise a marker

marker = 1

3. Traverse through all list items

while (marker < len(theList)):

 # 4. Insert the selected item to its correct position

 j = marker

 while (theList[j] < theList[j-1] and j>0):

 tmp = theList[j]

 theList[j] = theList[j-1]

 theList[j-1] = tmp

 j = j-1

 # 6. Advance the marker to the right by 1 position

 marker = marker+1

Starting with theList comprising of [5, 7, 3, 6, 2] the table below highlights the

comparisons and exchanges that take place on each pass of the insertion sort algorithm.

Pass State of List (before-> after) Comment

1 [5, 7, 3, 6, 2] -> [5, 7, 3, 6, 2]
5 and 7 are compared but not exchanged since
they are both in order relative to one another

2
[5, 7, 3, 6, 2] -> [5, 3, 7, 6, 2]
[5, 3, 7, 6, 2] -> [3, 5, 7, 6, 2]

7 and 3 are compared and exchanged
5 and 3 are compared and exchanged

3 [3, 5, 7, 6, 2] -> [3, 5, 6, 7, 2] 7 and 6 are compared and exchanged

4

[3, 5, 6, 7, 2] -> [3, 5, 6, 2, 7]
[3, 5, 6, 2, 7] -> [3, 5, 2, 6, 7]
[3, 5, 2, 6, 7] -> [3, 2, 5, 6, 7]
[3, 2, 5, 6, 7] -> [2, 3, 5, 6, 7]

7 and 2 are compared and exchanged
6 and 2 are compared and exchanged
5 and 2 are compared and exchanged
3 and 2 are compared and exchanged

The total number of passes is four. The total number of comparison operations is eight and

the total number of exchanges is seven.

LCCS National Workshop 5 Workbook

 95

Exercises – Insertion Sort

1. Explain what is going on at each stage of the insertion sort algorithm below.

Make sure to identify all comparison and exchange operations.

Data Comment

This is the initial unsorted list.

Total number of comparison operations:

Total number of exchanges:

LCCS National Workshop 5 Workbook

 96

2. Perform an insertion sort on the following list of integers:

LCCS National Workshop 5 Workbook

 97

Bubble Sort

The bubble sort algorithm works by repeatedly comparing adjacent element and swapping

them if they are out of order. The effect is that on each pass of the bubble sort, the largest

unsorted item ‘bubbles’ towards the end of the list into its sorted position.

The algorithm is summarised below for an ascending order sort:

1. Initialise an unsorted list

2. Traverse across every element in the list

3. Compare all adjacent elements starting from the beginning

4. If the elements are out of order, then swap them

Example

Let’s look at how the bubble sort algorithm sorts the

list of numbers shown here into ascending order.

After
Pass

State of List (at the end of the pass) Explanation

1

After pass 1, 7 has ‘bubbled’ up
to the top of the list.

2

After pass 2, 6 has bubbled into
its sorted position.

3

After pass 3, 5 has bubbled into
its position.

4

After pass 4, 3 has bubbled into
its position.

5

After pass 5, 2 has bubbled into
its position.

Notice that 5 passes over the list were required in order to sort the 5 items. In general, the

bubble sort will take 𝑛 passes to sort a list of 𝑛 items.

LCCS National Workshop 5 Workbook

 98

We now examine what happens in pass 1 in greater detail. The following illustrations depict

the exchanges that take place in pass 1, and in particular, explain how 7 bubbles to the end

of the list.

This is the initial list.

The first two numbers to be compared are 5 and
7. Since these two numbers are in order no
exchange is necessary.

The algorithm then proceeds by comparing the
next adjacent pair i.e. 7 and 3. Since they are out
of order they must be swapped.

This is what the list looks like after 7 and 3 have
been swapped.

The algorithm then compares 7 and 6 and since
these two numbers are out of order they must be
swapped.

6 and 7 have been swapped.

7 and 2 are the next ajacent pair to be compared.
Since 7 is greater than 2 they are swapped.

This is the final state of the list after pass 1. As
there are no more adjacent pairs the algorithm
proceeds to pass 2.

Notice that in the above list of 5 items there are 4 comparisons. In general, for a list of 𝑛

elements, the bubble sort will make 𝑛 − 1 comparisons on each pass.

Reflection Exercise

Do you think the bubble sort is an efficient algorithm? Justify your answer.

LCCS National Workshop 5 Workbook

 99

We will now look at a Python implementation of the bubble sort algorithm.

Bubble Sort v1

1. Initialise an unsorted list

aList = [5, 7, 3, 6, 2]

print("INPUT (initial list): ", aList)

2. Traverse across every element in the list

for i in range(len(aList)):

 # 3. Compare all adjacent elements starting from the beginning

 for j in range(len(aList)-1):

 # 4. if the elements are out of order, then swap them

 if aList[j] > aList[j+1]:

 temp = aList[j+1]

 aList[j+1] = aList[j]

 aList[j] = temp

print("OUTPUT (sorted list): ", aList)

The exchanges that take place on each pass are highlighted below

Pass Exchanges (before -> after) Comment

1

[5, 7, 3, 6, 2] -> [5, 7, 3, 6, 2]
[5, 7, 3, 6, 2] -> [5, 3, 7, 6, 2]
[5, 3, 7, 6, 2] -> [5, 3, 6, 7, 2]
[5, 3, 6, 7, 2] -> [5, 3, 6, 2, 7]

This sequence of exchanges was detailed on
the previous page. Notice that after 4
comparisons and 3 exchanges 7 has bubbled
up to the end of the list

2

[5, 3, 6, 2, 7] -> [3, 5, 6, 2, 7]
[3, 5, 6, 2, 7] -> [3, 5, 6, 2, 7]
[3, 5, 6, 2, 7] -> [3, 5, 2, 6, 7]
[3, 5, 2, 6, 7] -> [3, 5, 2, 6, 7]

Notice that 5 and 3 are initially exchanged.
5 and 6 are compared but not exchanged
because 6 is bigger. 6 and 2 are then
exchanged. This brings 6 to its sorted position.

3

[3, 5, 2, 6, 7] -> [3, 5, 2, 6, 7]
[3, 5, 2, 6, 7] -> [3, 2, 5, 6, 7]
[3, 2, 5, 6, 7] -> [3, 2, 5, 6, 7]
[3, 2, 5, 6, 7] -> [3, 2, 5, 6, 7]

3 is compared to 5 but there is no exchange (as
they are in order). Then 5 is compared to 2 and
they are exchanged. 5 is compared to 6 and
then 7 but no exchanges ensue and so 5 is in
its sorted positon.

4

[3, 2, 5, 6, 7] -> [2, 3, 5, 6, 7]
[2, 3, 5, 6, 7] -> [2, 3, 5, 6, 7]
[2, 3, 5, 6, 7] -> [2, 3, 5, 6, 7]
[2, 3, 5, 6, 7] -> [2, 3, 5, 6, 7]

3 is exchanged with 2 to bring it to its final
sorted position. No further exchanges take
place.

5

[2, 3, 5, 6, 7] -> [2, 3, 5, 6, 7]
[2, 3, 5, 6, 7] -> [2, 3, 5, 6, 7]
[2, 3, 5, 6, 7] -> [2, 3, 5, 6, 7]
[2, 3, 5, 6, 7] -> [2, 3, 5, 6, 7]

Although each pair of adjacent items are
compared, no exchanges take place as the list
happens to be sorted. The comparisons are 2
with 3, 3 with 5, 5 with 6 and 6 with 7.

LCCS National Workshop 5 Workbook

 100

By this stage it should be evident that the bubble sort is not a very efficient algorithm. We will

discuss two inefficiencies:

1. The first inefficiency derives from the fact the outer loop traverses over every element in

the list – even if the list is already sorted (and no matter how many items the algorithm

thinks it has left to sort).

To highlight this problem let us consider how the algorithm behaves if it is presented with

a list that was already sorted e.g. aList = [1, 2, 3, 4]. The algorithm proceeds to

make 4 passes over the data - each pass compares the adjacent elements (3

comparisons: 1 with 2, 2 with 3 and 3 with 4). No exchange ever ensues since elements

are all in the required order giving a total of 12 unnecessary comparison operations.

Now consider the algorithm’s behaviour if the initial list look like this: [4, 2, 3, 1]. By

the end of the first pass 4 would have bubbled to the end and the list would be sorted.

Despite this, the algorithm would continue with three more ‘exchange-less’ passes. In

this case we we have 9 unnecessary comparison operations

In order to eliminate this inefficiency, we introduce a flag called exchange. The outer

loop is modified so that the program traverses across every element as long as

exchange has a value of True. The flag is initialised to False at the start of each pass

and set to True only when an exchange occurs.

Bubble Sort v2

1. Initialise an unsorted list

aList = [1, 2, 3, 4]

exchange = True

i = 0

2. Traverse across every element as long as there are exchanges

while (i < len(aList)) and (exchange == True): # or just ‘exchange’

 exchange = False # assume that there will be no exchanges

 # 3. Compare all adjacent elements starting from the beginning

 for j in range(len(aList)-1):

 # 4. if the elements are out of order, then swap them

 if aList[j] > aList[j+1]:

 temp = aList[j+1]

 aList[j+1] = aList[j]

 aList[j] = temp

 exchange = True # we've done an exchange!

 i = i+1 # increment the loop counter

LCCS National Workshop 5 Workbook

 101

Although it might seem trivial, this is a decent improvement on the previous version of

the algorithm. The algorithm now recognises (by the absence of any exchanges) when

the list is sorted and can terminate accordingly. Consider how many comparison

operations this would save in a sorted list of 1,000,000 items.

2. The second inefficiency in the algorithm derives from the fact that the algorithm ignores

the items it has already sorted on previous passes. To illustrate this point clearly let us

return to our earlier example. The table below highlights the (unnecessary) comparisons

that are made involving items that have already been sorted.

Pass State of List (before-> after) Comment

1 [5, 7, 3, 6, 2] -> [5, 3, 6, 2, 7]
After pass 1, 7 has been moved into its sorted
position. There are no unnecessary comparisons.

2 [5, 3, 6, 2, 7] -> [3, 5, 2, 6, 7]
6 is unnecessarily compared to 7 at the end of
pass 2 (because since 7 has already been sorted
the comparison cannot result in an exchange).

3 [3, 5, 2, 6, 7] -> [3, 2, 5, 6, 7]
5 is unnecessarily compared to 6 and 6 is
unnecessarily compared to 7 at the end of pass 2

4 [3, 2, 5, 6, 7] -> [2, 3, 5, 6, 7] There are 3 unnecessary comparisons

5 [2, 3, 5, 6, 7] -> [2, 3, 5, 6, 7] All 4 comparisons are unnecessary.

Each pass makes 𝑛 − 1 comparisons even though the comparisons involving the sorted

items cannot result in an exchange. The solution is to reduce the number of iterations of the

inner loop by 1 on each pass of the data.

This is done in our final implementation of the bubble sort which is shown on the next page.

The algorithm works by maintaining a variable, 𝑖 such that for a list of length 𝑛:

- all items 𝐴[0 . . 𝑖 − 1] are unsorted and

- all items 𝐴[𝑖 . . 𝑛 − 1] are sorted

LCCS National Workshop 5 Workbook

 102

Bubble Sort v3

1. Initialise an unsorted list

aList = [5, 7, 3, 6, 2, 4, 1]

print("INPUT (initial list): ", aList)

exchange = True

n = len(aList)

i = 0

2. Traverse across every element as long as there are exchanges

while (i < n) and exchange:

 print("BEFORE PASS %d: %s " %(i+1, aList))

 exchange = False # assume that there will be no exchanges

 # 3. Compare all unsorted adjacent elements

 for j in range(n-i-1):

 # 4. if the elements are out of order, then swap them

 print("%s " %aList, end="-> ")

 if aList[j] > aList[j+1]:

 aList[j], aList[j+1] = aList[j+1], aList[j] # Canonical swap!

 exchange = True # we've done an exchange!

 print("%s " %aList)

 print("AFTER PASS %d: %s " %(i+1, aList))

 i = i+1 # increment the loop counter

print("OUTPUT (sorted list): ", aList)

Take some time to study the code and understand how the for loop highlighted in the

above code is used to improve the efficiency of earlier versions of the bubble sort algorithm.

Notice the use of the print statements to display the states of the list as the sort

progresses - the output is shown on the next page.

As an exercise you might consider modifying the code so that it computes the following:

- the number comparisons on each pass

- the total number of exchanges on each pass

- the total number of comparisons

- the total number of exchanges

LCCS National Workshop 5 Workbook

 103

Exercise – Bubble Sort

The data shown on the left below was generated by our final implementation of the bubble

sort algorithm shown on the previous page. Use the right hand column to explain the

progress of the algorithm.

INPUT (initial list): [5, 7, 3, 6, 2, 4, 1]

BEFORE PASS 1: [5, 7, 3, 6, 2, 4, 1]

[5, 7, 3, 6, 2, 4, 1] -> [5, 7, 3, 6, 2, 4, 1]

[5, 7, 3, 6, 2, 4, 1] -> [5, 3, 7, 6, 2, 4, 1]

[5, 3, 7, 6, 2, 4, 1] -> [5, 3, 6, 7, 2, 4, 1]

[5, 3, 6, 7, 2, 4, 1] -> [5, 3, 6, 2, 7, 4, 1]

[5, 3, 6, 2, 7, 4, 1] -> [5, 3, 6, 2, 4, 7, 1]

[5, 3, 6, 2, 4, 7, 1] -> [5, 3, 6, 2, 4, 1, 7]

AFTER PASS 1: [5, 3, 6, 2, 4, 1, 7]

Pass 1:

5 is compared with 7. No exchange

7 is exchanged with 3

BEFORE PASS 2: [5, 3, 6, 2, 4, 1, 7]

[5, 3, 6, 2, 4, 1, 7] -> [3, 5, 6, 2, 4, 1, 7]

[3, 5, 6, 2, 4, 1, 7] -> [3, 5, 6, 2, 4, 1, 7]

[3, 5, 6, 2, 4, 1, 7] -> [3, 5, 2, 6, 4, 1, 7]

[3, 5, 2, 6, 4, 1, 7] -> [3, 5, 2, 4, 6, 1, 7]

[3, 5, 2, 4, 6, 1, 7] -> [3, 5, 2, 4, 1, 6, 7]

AFTER PASS 2: [3, 5, 2, 4, 1, 6, 7]

Pass 2:

5 is exchanged with 3

5 is compared with 6. No exchange

BEFORE PASS 3: [3, 5, 2, 4, 1, 6, 7]

[3, 5, 2, 4, 1, 6, 7] -> [3, 5, 2, 4, 1, 6, 7]

[3, 5, 2, 4, 1, 6, 7] -> [3, 2, 5, 4, 1, 6, 7]

[3, 2, 5, 4, 1, 6, 7] -> [3, 2, 4, 5, 1, 6, 7]

[3, 2, 4, 5, 1, 6, 7] -> [3, 2, 4, 1, 5, 6, 7]

AFTER PASS 3: [3, 2, 4, 1, 5, 6, 7]

Pass 3:

BEFORE PASS 4: [3, 2, 4, 1, 5, 6, 7]

[3, 2, 4, 1, 5, 6, 7] -> [2, 3, 4, 1, 5, 6, 7]

[2, 3, 4, 1, 5, 6, 7] -> [2, 3, 4, 1, 5, 6, 7]

[2, 3, 4, 1, 5, 6, 7] -> [2, 3, 1, 4, 5, 6, 7]

AFTER PASS 4: [2, 3, 1, 4, 5, 6, 7]

Pass 4:

BEFORE PASS 5: [2, 3, 1, 4, 5, 6, 7]

[2, 3, 1, 4, 5, 6, 7] -> [2, 3, 1, 4, 5, 6, 7]

[2, 3, 1, 4, 5, 6, 7] -> [2, 1, 3, 4, 5, 6, 7]

AFTER PASS 5: [2, 1, 3, 4, 5, 6, 7]

Pass 5:

BEFORE PASS 6: [2, 1, 3, 4, 5, 6, 7]

[2, 1, 3, 4, 5, 6, 7] -> [1, 2, 3, 4, 5, 6, 7]

AFTER PASS 6: [1, 2, 3, 4, 5, 6, 7]

Pass 6:

BEFORE PASS 7: [1, 2, 3, 4, 5, 6, 7]

AFTER PASS 7: [1, 2, 3, 4, 5, 6, 7]

Pass 7:

No Exchange

OUTPUT (sorted list): [1, 2, 3, 4, 5, 6, 7]

LCCS National Workshop 5 Workbook

 104

Quicksort

The quicksort algorithm was developed in 1962 by the famous British computer scientist,

Tony Hoare. As its name suggests, quicksort, is a very efficient sorting algorithm (considered

to be the fastest general purpose sorting algorithm). Quicksort belongs to a special class of

algorithms called divide-and-conquer algorithms and owes much of its efficiency to divide-

and-conquer as a general problem solving technique. (Merge sort is another popular

example of a divide-and-conquer sorting algorithm and later in this manual we will see how

binary search uses the divide-and-conquer technique is used to search for some arbitrary

value in a list of keys.)

The general principle of divide-and-conquer is to solve large problems by decomposing or

breaking them down into smaller sub-problems and solving these smaller problems

recursively, and then combining the results to form a complete solution.

In particular, the quicksort algorithm operates by dividing its list into two partitions around

some special value called a pivot. The lists are divided so that all the elements in the first

partition are less than or equal to the pivot and all the elements in the second partition are

greater than the pivot. By sorting the sub-lists using the exact same technique we eventually

reach the point where all elements are sorted.

The illustration below depicts an unsorted list with the last element chosen as an initial pivot.

The list is partitioned into two sub-lists – a left sub-list and a right-sub-list. All the elements in

the left sub-list are less than the pivot and all the elements in the right-sub-list are greater

than the pivot. The algorithm proceeds by sorting the two sub-lists recursively.

The diagram depicts the initial pivot sorted with respect to the two sub-lists.

LCCS National Workshop 5 Workbook

 105

The steps of the quicksort algorithm can be expressed recursively as follows:

STEP 1. Choose the rightmost element in the list as the pivot

STEP 2. Create three empty lists called left_list, middle_list and right_list

STEP 3. for each element (key) in the list

 if element is < pivot add it to left_list

 if element is == pivot add it to middle_list

 if element is > pivot add it to right_list

STEP 4. The result is a list made up by applying steps 1-3 to left_list, followed by the

elements in middle_list, followed by applying steps 1-3 to right_list

Each list is partitioned until it contains just one element. These steps are illustrated in the

graphic below starting with an unsorted list [88, 46, 25, 11, 18, 12, 22] with 22 as the pivot.

LCCS National Workshop 5 Workbook

 106

A Python implementation of the quicksort algorithm is shown below:

def quick_sort(L):

 left_list = []

 middle_list = []

 right_list = []

 # Base case

 if len(L) <=1:

 return(L)

 # Set pivot to the last element in the list

 pivot = L[len(L)-1]

 # Iterate through all elements (keys) in L

 for key in L:

 if key < pivot:

 left_list.append(key)

 elif key == pivot:

 middle_list.append(key)

 else:

 right_list.append(key)

 # Repeat the quicksort on the sub-lists and combine the results

 return quick_sort(left_list) + middle_list + quick_sort(right_list)

The crux of the algorithm is the partitioning process described in step 3 on the previous

page. This process is applied recursively to every left and right list i.e. quicksort the left sub-

list and quicksort the right sub-list, until the list is either empty or contains a single element.

(This is the base case used to end the recursion.) The final sorted list is assembled by

concatenating these base case lists together.

The algorithm can be tested using the following driver code:

Driver code ...

aList = [88, 46, 25, 11, 18, 12, 22]

print("INPUT (initial list): ", aList)

print("OUTPUT (sorted list): ", quick_sort(aList))

When the program is run the following output is generated:

LCCS National Workshop 5 Workbook

 107

Notes:

1) The same functionality of the final line of code in the function (i.e. the return statement)

could be achieved by using the following three lines:

 sorted_left_lists = quick_sort(left_list)

 sorted_right_lists = quick_sort(right_list)

 return sorted_left_lists + middle_list + sorted_right_lists

2) The choice of pivot value is important and several different techniques are employed. In

some implementations the middle element is chosen as the pivot; in others it is the first

element; more advanced implementation select the pivot based on the arithmetic mean

of the list elements. The implementation shown here use the last element for the pivot.

A useful exercise is to consider how the performance of the algorithm would be impacted

if the pivot chosen was either the smallest or the largest element in the list.

3) This is not the most efficient implementation of the quicksort possible – in fact, it is a very

inefficient version of quicksort (and is used here because of its simplicity relative to other

versions of the same algorithm). The inefficiency of this implementation is mainly down

to its reliance on additional external memory in order to store the left and right sub-lists.

For very large lists this becomes highly inefficient and even infeasible.

More efficient implementations do not require the use of additional memory and can

perform the sort using ‘in place’ memory. Such techniques work by exchanging elements

either side of the pivot that are found to be out of order relative to the pivot. For example,

elements that are larger than the pivot and to its left might be exchanged with elements

that are smaller than the pivot and to its right.

LCCS National Workshop 5 Workbook

 108

Exercise

Show, in the style of the quicksort tree diagram on the previous page how the following list of

integers could be sorted using a quicksort. The initial pivot is shown in red.

Use the space below to explain in your own words how the quicksort algorithm works:

LCCS National Workshop 5 Workbook

 109

Linear Search

Let’s say we were asked the question: does the list below contain the number fourteen?

Without thinking twice, most of us would scan down through the list until we arrive at the

number fourteen. This intuitive response is called a linear search.

As we scan each element we perform a quick Boolean calculation. True or False - is the

element I am looking at equal to fourteen? If the result is true, we have found the required

element and the search can end; otherwise, if the result is False we automatically (and very

quickly) move on to the next element and repeat the Boolean calculation. This process

continues until either we find fourteen, or we reach the end of the list, by which time we can

conclude that the fourteen is not contained in the list.

The linear search algorithm is also called a sequential search. The sequential nature of the

process is illustrated below.

Is 15 the same as 14?

No.

Move to next element.

Is 4 the same as 14?

No.

Move to next element.

Is 41 == 14?

No.

Move to next element.

13 == 14?

No.

Next element

if 13 == 14:

 Found

Else:

 Next element

if 14 == 14:

 Found (so STOP!)

Else:

 Next element

LCCS National Workshop 5 Workbook

 110

Given a list of elements to search through (i.e. keys), and a target value to search for (i.e. an

argument), the steps of the linear (sequential) search algorithm can be expressed as follows:

1. Set a marker at the start of the list (called idx in the flowchart below)

2. Loop through steps 3 − 7 as long as there are more numbers to compare

3. Compare the current element to the target value

4. If they match:

5. Return the value of the marker (idx)

6. If they are not equal:

7. Advance the marker right by one position (idx = idx+1)

8. Return the value of the marker (idx)

When the above algorithm is applied to find the number fourteen in the list show below it will

result in a value of 5. This is the index position of the target element in the list. (Recall, that a

list index is a zero-based positional offset.)

It is important to note that when the target value is not found in the list, the algorithm returns

the length of the list. For example, if the algorithm was applied to find the number 22 in the

above list the result will be 8 (because the length of this list is 8). When a target value is

found in a list, the search operation is said to be successful; otherwise unsuccessful.

LCCS National Workshop 5 Workbook

 111

Unsuccessful searches can be inferred by the calling code simply by comparing the returned

value to the list length. If the value returned by the linear search algorithm is equal to the list

length, then the code can deduce that the search was unsuccessful. (This is because list

lengths are one-based i.e. the length of a list is always one more than the index of the final

element.

In summary, the linear search algorithm works by starting at the first list element and working

its way from left-to-right, it compares each element with the target value until either a match

is found or the end of the list has been reached.

Some advantages and disadvantages of the linear search algorithm are as follows:

Intuitive and easy to follow – Google advantages

Advantages

1. Simplicity. The linear search is intuitive to most. It is relatively easy to understand and

implement.

2. It does not require the data to be stored in any particular order.

Disadvantage

The main disadvantage of the linear search algorithm lies in its lack of efficiency. The more

elements there are in a list the greater the amount of time it will take to search for any

specific element. In fact, the amount of time it takes to find a target value increases in

proportion to the number of elements in the list to search. Therefore, it will take ten times

longer to find an element in a list of 1,000 elements than it would for a list of 100 elements.

This is called linear time complexity, or O(n) for short.

One Python implementation of the linear search algorithm is shown in the code below.

def linear_search_v1(v, L):

 i = 0

 while i < len(L): # more?

 if L[i] == v: # match?

 return i # successful

 i = i + 1

 return i # unsuccessful

LCCS National Workshop 5 Workbook

 112

The function linear_search_v1 is defined to return the position of target value, v in list, L

if successful; otherwise the length of the list will be returned.

The algorithm can be tested using the following driver code – the user is prompted to enter a

target value to search for. This is stored in the variable, argument.

Driver code ...

keys = [15, 4, 41, 13, 24, 14, 12, 21]

argument = int(input("Enter a target value: "))

result = linear_search_v1(argument, keys)

if (result != len(keys)):

 print("%d found at position %d" %(argument, result))

else:

 print("%d not found. Return value is %d" %(argument, result))

Some sample runs are illustrated below:

A number of common variations on this implementation of the linear search algorithm exist.

Some of these variations are shown on the next page.

LCCS National Workshop 5 Workbook

 113

Version 2 of our linear search algorithm uses a Boolean variable called match to indicate

whether a match has been found (or not) by the algorithm. Initially, match is set to False

and the search continues as long as it remains False (i.e. not match will be True when

match is False) and there are more elements to compare (i.e. i < len(L)).

def linear_search_v2(v, L):

 i = 0

 match = False

 while not match and i < len(L):

 if L[i] == v: # match?

 match = True

 else:

 i = i + 1

 return i

This next version is a refinement on the one above. Basically, the logic for finding a match

and testing for the end of the list are combined into one Boolean expression which becomes

the loop guard. The need for an additional if-else test inside the loop is removed. The

elegance of this solution lies in the fact that the loop body needs only to contain a single

statement (i = i + 1) to advance to the next element.

def linear_search_v3(v, L):

 i = 0

 while i < len(L) and L[i] != v: # more? and match?

 i = i + 1

 return i

Version 4 of our algorithm shown below uses a for loop instead of a while loop. Notice

that len(L) is returned in this version to indicate that the search was unsuccessful.

def linear_search_v4(v, L):

 for i in range(len(L)):

 if L[i] == v:

 return i

 return len(L)

LCCS National Workshop 5 Workbook

 114

This next version – perhaps the simplest of all – uses a for loop and exploits the Python

‘in’ operator.

def linear_search_v5(v, L):

 i = 0

 for element in L:

 if element == v:

 return i

 i = i + 1

 return len(L)

One interesting question worth exploring is:

How could the linear search algorithm be improved if it was known that the list to be

searched was already sorted?

Finally, it is worth noting linear search can be implemented recursively as follows:

def linear_search_v6(v, L, index=0) :

 if len(L) != 0:

 if L[0] == v:

 return index

 r = linear_search_v6(v, L[1:], index+1)

 if r != -1:

 return r

 return -1

The sequence of lists passed into the

recursive function are stacked as show.

(This is based on the same example we

used earlier i.e. the target value is 14.)

The approach taken is to compare the

target value, v with first element in L. If

element is found at the first position

(L[0]), the index is returned.

Otherwise, recur for the remainder of

the list (L[1:]).

LCCS National Workshop 5 Workbook

 115

Exercise

Use the flowchart below to explain the process of finding the number 26 in the following list

of values:

Explain the meaning of more? in the above flowchart?

Explain the meaning of match? in the above flowchart?

LCCS National Workshop 5 Workbook

 116

Binary Search

Many people are familiar with the following (guessing) game.

Think of a number between 1 and 32. Now ask someone to guess the number you are

thinking of. In each turn, if the guess is not correct, tell your opponent whether the number is

too high or too low and ask them to try again. Keep going until he or she guesses your

number. How many guesses did it take? Go again. Play the game a few times taking note of

the number of guesses it took to find the secret number each time.

Can you explain why the maximum number of guesses it will take to correctly guess any

number you can think of between 1 and 32 would be 5? Or is it 6? What if the problem space

was doubled i.e. how many guesses would be needed to guarantee success for any number

between 1 and 64?

The strategy used by most in the above game is the same strategy employed by the binary

search algorithm. It is also the same strategy that people would have used to look up

telephone numbers from an alphabetically sorted list of names contained in what was called

a phone book back in the 20th century!

The binary search algorithm is an example of a divide-and-conquer algorithm. Divide-and-

conquer is problem solving technique which works by repeatedly reducing the problem

(divide) and then attempting to solve the problem (conquer) on the new problem space. In

this case the approach is to repeatedly divide the portion of the list that could contain the

item in two (i.e. half), until either the item is found or the list cannot be divided any further.

Instead of testing the list's first element, the binary search starts with the element in the

middle. If that element happens to contain the target value, then the search is over. If the

target value is less than the middle element of the list, we restrict the search to the first half

of the list; otherwise we search the second half of the list. Either way, half of the list’s

elements are eliminated from further searching on each iteration and the procedure is

repeated for the half of the list that potentially contains the value. This process continues

until the value being searched for is either found, or there are no more elements to test.

Donald Knuth is famously quoted as saying that an algorithm must be seen to believed, and

the best way to learn what an algorithm is all about is to try it. So let’s put Knuth’s advice to

practice and try the binary search algorithm.

LCCS National Workshop 5 Workbook

 117

Binary search pseudo-code

The pseudo-code for the binary search algorithm is as follows:

1. Set low = 0

2. Set high = length of list – 1

3. Set mid =
low+high

2
, rounded down to an integer

4. If the value at the mid position is the same as the target value

 Return mid

Else If the value at the mid position is less than the target value

Set low = mid + 1

Else If the value at the mid position is greater than the target value

Set high = mid - 1

5. As long as low doesn’t ‘cross over’ high, go back to step 3 above

6. Return -1

Let’s say we were tasked with applying the above algorithm to search for a target value of 28

in the following list of 16 values. Notice the index numbers from 0…15 are displayed over

each list element and, crucially, that the list has already been sorted.

In the first three steps of the algorithm we set the variables low, high and mid to 0, 15 and

7 respectively.

We now move to line 4 of the algorithm and since 14 is less than 28 we change the value of

low to mid+1 which is 8. The value of mid is computed to be (8 + 15)/2 which is 11

(rounded down). Our state now look like this.

LCCS National Workshop 5 Workbook

 118

Since 25 is less than 28 we change the value of low again, this time to 12. The new value

for mid becomes 13 and the state can be visualised as follows:

Since the next comparison finds the target value, the algorithm can terminate successfully.

The use if trace tables can be very helpful in carrying out a binary search. A trace table for

this example might look as follows:

low mid high Rough work

0 7 15

L[7] is 14.

14 < 28 so move low to the right of mid and re-compute

mid

mid now becomes 11

8 11 15

L[11] is 25.

25 < 28 so move low to the right of mid and re-compute

mid

mid now becomes 13

12 13 15 L[11] is 28. Found!

The graphic below taken from geeksforgeeks.org is a nice illustration of how the binary

search finds the letter ‘J’ in the list made up of the first 24 letters of the alphabet (‘A’ – ‘X’)

LCCS National Workshop 5 Workbook

 119

A Python implementation of the binary search algorithm is shown below in the function

binary_search. The function is defined to return the position of some target value, v in a

list, L if successful; otherwise the length of the list will be returned.

def binary_search(v, L):

 low = 0

 high = len(L)-1

 while (low <= high):

 mid = (low+high)//2

 if L[mid] == v:

 return mid

 elif L[mid] < v:

 low = mid + 1

 else:

 high = mid - 1

 return len(L)

The algorithm can be tested using the driver code shown below. The list, keys is first

initialised The user is then prompted to enter a target value to search for. This is stored in

the variable, argument.

Driver code ...

keys = [2, 4, 5, 7, 8, 9, 12, 14, 17, 19, 22, 25, 27, 28, 33, 37]

argument = int(input("Enter a target value: "))

result = binary_search(argument, keys)

if (result != len(keys)):

 print("%d found at position %d" %(argument, result))

else:

 print("%d not found. Return value is %d" %(argument, result))

Some sample runs are shown below.

Sample Run #1

Look for v, 28 in L

Sample Run #2

Look for v, 57 in L

LCCS National Workshop 5 Workbook

 120

Exercise

Given the list, L of sixteen integers shown below.

Describe the binary search path to search L for the following target values, v.

a) 19 b) 12 c) 15

A trace table with the initial values of low, mid and high already filled in is provided to get

you started.

low mid high Rough work

0 7 15

LCCS National Workshop 5 Workbook

 121

The main advantage and disadvantage of the binary search are as follows.

Advantage

The binary search is much a more efficient algorithm than the linear search. Every time it

makes a comparison and fails to find the desired item, it eliminates half of the remaining

portion of the array that must be searched. For example, consider an array with 1,000

elements. If the binary search fails to find an item on the first attempt, the number of

elements that remains to be searched is 500. If the item is not found on the second attempt,

the number of elements that remains to be searched is 250. This process continues until the

binary search has either located the desired item or determined that it is not in the array.

With 1,000 elements this takes no more than 10 comparisons. Compare this to the

performance of the linear search which for this scenario would need to make an average

number of 500, and a worst case of 1,000 comparisons to achieve the same result.

The following charts illustrate how the two search algorithms stack up against each other in

terms of performance. We are already aware that the performance of the linear search

increases in proportion to the number of items in the list to search. This linearity is clearly

shown by the blue line below. However, notice how the performance cost of the binary

search (shown by the brown line) barely rises above the x-axis using this scale.

The next graph shows the same data but this time the x-axis is scaled logarithmically. Again

the rise in cost of the binary search is barely noticeable as the size of the list grows. Notice,

however that the cost of the linear search appears to grow exponentially with respect to the

size of the list to search.

0

300

600

900

1200

1500

1800

2100

2400

0 300 600 900 1200 1500 1800 2100 2400

N
o

. C
o

m
p

ar
is

o
n

s

N (The size of the list to search)

Binary vs. Linear Search

Linear Search

LCCS National Workshop 5 Workbook

 122

The final graphs shown below uses a log-log scale i.e. both x- and y-axes are scaled

logarithmically.

Here we can finally see the true logarithmic nature of the efficiency of the binary search

emerge. In particular, notice that the performance of the binary search is a logarithmic

function of the size of the problem space. Furthermore, the graph is evidence that binary

search is exponentially faster than its linear counterpart.

Disadvantage

The main drawback of the binary search is that the elements must be sorted beforehand.

0

300

600

900

1200

1500

1800

2100

2400

1 4 16 64 256 1024

N
o

. C
o

m
p

ar
is

o
n

s

N (The size of the list to search)

Binary vs. Linear Search

Linear Search

1

4

16

64

256

1024

1 4 16 64 256 1024

N
o

. C
o

m
p

ar
is

o
n

s

N (The size of the list to search)

Binary vs. Linear Search

Linear Search

LCCS National Workshop 5 Workbook

 123

Recursive Implementation

The code below shows a recursive implementation of the binary search. The function

searches for v in L between L[low] and L[high].

def recursive_binary_search(v, L, low, high):

 # JE: Uncomment this next line to see the search space

 #print("v(%d) L(%s) low(%d) high(%d)" %(v, str(L[low:high+1]), low, high))

 if low > high:

 return len(L) # Not Found!

 mid = (low + high)//2

 if v == keys[mid]: # Found!

 # v is at mid in L so breakout of recursion

 return mid

 elif v < keys[mid]:

 # v is in the lower half of L so recur on L up to mid-1

 return recursive_binary_search(v, L, low, mid-1)

 # v is in the upper half of L so recur on L from mid+1

 return recursive_binary_search(v, L, mid+1, high)

As is the case with all recursive algorithms there is a base case and a reduction step. In the

base case the function returns without making a recursive call, and in the reduction step the

function makes a recursive call (i.e. it calls itself) and in so-doing moves one step closer to

the base case.

In this example, there are two base cases as follows:

1) The list is empty (this occurs when low > high) and

2) The middle element in the list is the value being searched for

The recursive call depends on the outcome of a comparison between the middle element in

the list being searched and the target value:

- if the target value is less than the middle element the function recurs on first (lower) half

of the list i.e. recursive_binary_search(v, L, low, mid-1)

- if the target value is greater than the middle element the function recurs on second

(upper) half of the list i.e. recursive_binary_search(v, L, mid+1, high)

LCCS National Workshop 5 Workbook

 124

The recursive binary search algorithm can be tested using the driver code shown below. The

list, keys is first initialised The user is then prompted to enter a target value to search for.

This is stored in the variable, argument.

The initial call to the recursive function to search for argument in keys is highlighted in

bold. Note that the search is confined to work within the index range that is specified by the

last two arguments i.e. 0 and 15 in the case of this example.

Driver code ...

keys = [2, 4, 5, 7, 8, 9, 12, 14, 17, 19, 22, 25, 27, 28, 33, 37]

argument = int(input("Enter a target value: "))

result = recursive_binary_search(argument, keys, 0, len(keys)-1)

if (result != len(keys)):

 print("%d found at position %d" %(argument, result))

else:

 print("%d not found. Return value is %d" %(argument, result))

Three separate sample runs to search for 14, 28 and 38 in keys are shown below. The

values of variables, v, L, low and high at each step of the recursion process are shown for

information purposes.

LCCS National Workshop 5 Workbook

 125

Activity #2: Developing our understanding

The main objective of this activity is that each participant gains a procedural understanding

of the simple (selection) sort, the insertion sort and the bubble sort algorithms.

For this activity participants are divided into groups (4 individuals per group is ideal) and

each group is assigned with an initial algorithm to study.

Stages 1 and 2 (15 minutes)

Everyone spends five minutes reading the assigned algorithm to themselves.

In the next five to ten minutes the algorithm is discussed in groups. The aim of this

discussion is to ensure that everyone has a concrete understanding of how the algorithm

works – points of confusion are clarified and a strategy for explaining how the algorithm

works to others is agreed upon.

Stage 3 (10 minutes x 2)

Two people (pairs) from each group remain at their original table while the other pair move to

the another table (e.g. 1 4; 2 5; 3 6). The pairs explain/demonstrate their

algorithms to one another (no more than 5 minutes per pair!).

This is repeated once so that everyone has had an opportunity to learn each of the three

elementary sorting algorithms.

A detailed description of each algorithm is provided elsewhere in this manual.

LCCS National Workshop 5 Workbook

 126

Activity 2.1 The Simple (Selection) Sort

Let’s say we’re tasked with sorting the values of some list, aList arranged as follows:

Place your index finger as a marker under the first element (i.e. the 9 of diamonds) and

proceed as follows:

- find the smallest value to the right of your marker and swap the two values

- move your marker (index finger) one place to the right

- repeat this process until the marker reaches the end of the list

Use the space below to trace the state of the list as you progress:

When you reach the end the list should be sorted as follows:

LCCS National Workshop 5 Workbook

 127

Use the space below to describe your own understanding of how the simple (selection) sort

algorithm works.

LCCS National Workshop 5 Workbook

 128

Activity 2.2 The Bubble Sort

The bubble sort repeatedly ‘bubbles’ larger items towards the (sorted) end of the list. Given

an unsorted list, L as input:

The table below depicts the state of L at the end of each pass of the bubble sort algorithm.

After
Pass #

State of List (at the end of the pass)
Notes
(what exchanges take place?)

1

2

3

4

5

How many exchanges would take place if the initial list was:

a) already sorted, b) in reverse order?

a) Already Sorted e.g. [1, 2, 3, 4, 5]

b) Reverse Order e.g. [5, 4, 3, 2, 1]

LCCS National Workshop 5 Workbook

 129

Use the space below to explain how the bubble sort algorithm works:

LCCS National Workshop 5 Workbook

 130

Activity 2.3 The Insertion Sort

In any list the first item is always considered sorted with respect to all the items to its left.

Then working from left to right each subsequent item is inserted into its correct place with

respect to the previously sorted items.

Follow the instructions below to sort the following list:

Place your index finger as a marker under the first item in the unsorted list (i.e. in this case

the first selected item will be 7) and proceed as follows:

- insert the selected item into its correct place within the sorted list (to the left). This is

done by repeatedly swapping back (leftwards) with all larger neighbours to the left

- move your marker (index finger) one place to the right (the next selected item in this

example will be 3)

- repeat this process until the marker reaches the end of the list

Use the space below to trace the state of the list at the end of each pass:

The final sorted list will look like this:

LCCS National Workshop 5 Workbook

 131

Use the space below to explain how the insertion sort algorithm works:

LCCS National Workshop 5 Workbook

 132

Section 4 - Analysis of Algorithms

Introduction to Algorithmic Efficiency (Complexity)

Now that we have developed an understanding of how some search/sort algorithms work,

the next logical step is to examine just how well they work. In this section we will analyse the

performance of algorithms. In computer science this is often referred to as algorithmic

efficiency or complexity. Two common measures of algorithmic efficiency are space and time

– the former provides an indication of the demands an algorithm places on memory in terms

of space requirements, while the later focuses on the time requirements of an algorithm. For

the most part, we will be confining the remainder of our discussion to time complexity.

The study of time complexity provides us with a framework which can be used to compare

algorithms and understand how well they perform in relation to one another. Before we can

begin to compare algorithms in terms of their performance however, we must first devise (or

at least agree upon) some system that is both impartial and reliable.

On the surface it might seem fair and make sense to simply time how long it takes an

algorithm to run in minutes and seconds (or milliseconds) and use this as a measure of

performance. As it turns out however this would be neither fair nor reliable. This is because a

computer’s performance can depend on a variety of different factors (e.g. processor clock

speed, word size, bus width and amount of available memory), and so, an algorithm that

takes 1000 milliseconds to run on one computer might run in just 10 milliseconds on another

(one hundred times faster!). In fact, depending on the processor load, the time taken to run

an algorithm could potentially vary significantly from run to run on the same processor.

Furthermore, the running time of an algorithm is likely to vary in accordance with the size of

its input. Intuitively it is easy to understand that a particular sorting algorithm will sort 1,000

integers must faster than it will sort 1,000,000 integers. However, as we will soon learn to

appreciate (hopefully!), it is the specific techniques and nuances employed by algorithms

that have a much greater bearing on performance than the size of the input.

And then there are questions such as what is the fastest time an algorithm can run in i.e.

what is the best case performance? Or is there an average performance time for a particular

algorithm? What about a worst case?

LCCS National Workshop 5 Workbook

 133

As it turns out it is this final question (regarding worst case) that computer scientists are

most interested in. The reason for this is that a worst case running time gives users a bottom

line guarantee that an algorithm will finish at worst within a particular timeframe, and for this

reason worst case scenario is used as a metric for comparing algorithms.

From the preceding section is should be evident that something other than exact running as

a metric for time complexity is needed. That something is Big-O.

Big O

Big O is a notation used in Computer Science to describe the worst case running time (or

space requirements) of an algorithm in terms of the size of its input usually denoted by 𝑛.

By using Big-O notation, algorithms can be broadly classified into one of the groups

described below. The running time (or space requirements) of algorithms within the same

classification is of the same order of growth with respect to 𝑛.

The imprecise nature of Big-O is important to understand from the outset. For example, an

algorithm found to take 2𝑛3 + 𝑛2 − 4𝑛 + 3 time to complete would be described as having a

complexity of 𝑂(𝑛3). This is because the higher order term will dominate the other terms for

sufficiently large values of 𝑛. The lower order terms and constant value can therefore be

ignored. Big-O provides an order of magnitude and can be thought of as a qualitative

descriptor as much as a quantitative one.

A description and examples of some common Big-O values is now presented.

O(1)

An algorithm described in this manner will always run within some constant time (sometimes

called bounded time) regardless of the size of the input. Such algorithms are said to take

‘order of 1’, or O(1) time to complete.

While it is possible that two different O(1) algorithms may take significantly different times to

complete this does not matter. The important point is that we know that O(1) algorithms will

complete within some constant time.

To take an analogy, let’s say it’s the weekend and you were preparing to do some serious

study but before you get started you first need to clear your room/desk. The time required to

LCCS National Workshop 5 Workbook

 134

do this work doesn’t depend in any way on the number of subjects you intend to study. It will

be completed within some constant amount of time regardless of whether you will study two

or ten subjects.

O(n)

If the length of time it takes to run an algorithm increases in proportion to the size of the input

the algorithm is said to run in linear time. Such algorithms have an O(n) complexity.

The linear (sequential) search algorithm used to find some target value (argument) in a list

that contains 𝑛 values is a classic example of an 𝑂(𝑛) algorithm. This is because in the

worst case scenario every element in the list will have to be examined in order to find the

target value. These algorithms are characterised by the following loop structure.

for i in range(n):

 print(i) # this line will be executed n times

Once again it is important to remember that the absolute time is not the important factor. On

average it will take much less time to search for a value in shorter lists than longer ones.

Recall, Big-O provides us with an objective classification scheme which can be used to

compare algorithms based on worst case scenarios.

To continue with our earlier analogy – let n be the number of subjects you are going to study

and let us say that you had decided to allocate a fixed amount of time to each subject. It

makes sense therefore that the more subjects you study the longer it will take to finish your

study. Twice as many subjects will require twice the amount of time.

O(𝑛2)

Now let’s say that you decided to use a slightly different approach to your study. Instead of

allocating the same fixed amount of time to each subject you decide to allocate fixed units of

time to reading individual pages of notes. You start by reading one page for the first subject,

two for the second, three for the third and so on. By the time you have reached your nth

subject you will need to read 𝑛 pages of notes. The amount of time it takes to complete your

study in this case is known as quadratic time and is written as O(𝑛2).

Algorithms of this type are characterised by loops nested to one level. For each of the 𝑛

iterations carried out by the outer loop, the inner loop will perform 𝑛 iterations of its own. This

LCCS National Workshop 5 Workbook

 135

is illustrated in the snippet of Python code below in which the print statement appears within

a nested for loop and will be executed 𝑛2 times.

for i in range(n):

 for j in range(n):

 print(i, j) # this line will be executed n squared times

The three elementary sort algorithms – selection sort, insertion sort and bubble sort – are all

examples of algorithms whose time complexity is quadratic. Furthermore, it is noteworthy

that algorithms in this class are impractical to use when it comes to dealing with large

volumes of data. Just think about it – if the size of a list doubles it would take four times

longer to sort; increasing the size of a list threefold will result in a nine-fold increase in time.

Not to labour the point too much, it would take 100 times longer to sort a list of 1000 items

than it would to take to sort a list just 10 times smaller. Quadratic time algorithms are simply

unsustainable.

𝑂(log2 𝑛)

These class of algorithms are said to be logarithmic. For algorithms that have logarithmic

time complexity it means that as the value n increases, the time complexity of your program

increases by a logarithmic factor.

Such algorithms are characterised by cutting the size of the input in half in each step as it

moves towards a solution. Take for example the following analysis of a binary search:

List Size (n)
Maximum number
of comparisons (c)

1 1

2 2

4 3

8 4

16 5

32 6

etc. etc.

As can be seen from the table above the maximum number of comparisons (steps) the

binary search algorithm needs to perform in order to find some target value just increases by

one each time the size of the input list is doubled.

LCCS National Workshop 5 Workbook

 136

The relationship between the size of the input (𝑛) and the maximum number of comparisons

(𝑐) required is given by:

𝑛 = 2𝑐−1

Therefore,

𝑐 = log2 𝑛 + 1

So binary search has 𝑂(log2 𝑛) time complexity which is a very impressive and desirable

feature for any algorithm to have. More importantly however is the fact that we can use this

to calculate the maximum number of comparisons it will take to search a list of any size i.e.

we can guarantee an upper bound. For example a list with 230 ≈ 1 𝑏𝑖𝑙𝑙𝑖𝑜𝑛 elements will take

no more than 31 comparisons. This is very useful information for software designers to have

at hand when they need to choose the most appropriate algorithm for the system they are

working on.

𝑂(𝑛 log2 𝑛)

When it comes to analysing worst case time complexity of algorithms that sort by using a

series of head-to-head comparisons, it is a proven fact that the best we can hope to achieve

is 𝑂(𝑛 log2 𝑛), also called “linearithmic” time. “Linearithmic” complexity lies somewhere

between linear and quadratic. It is not an understatement to say that algorithms with this

class of time complexity result in seismic improvements in performance.

“Linearithmic” algorithms are characterised by an approach to problem solving known as

divide-and-conquer. Depending on the particular algorithm there will be 𝑛 divisions and each

division will take log 𝑛 steps to conquer or vice versa.

Two examples of algorithms that fall into this class of time complexity are quicksort and

merge sort.

Intractable Problems

Finally, it is worth noting that algorithms can have time complexities that are exponential,

𝑂(2𝑛) and even worse, factorial, 𝑂(𝑛!). The solution to the Travelling Salesman Problem is

an example of a factorial time algorithm. Algorithms of this nature are said to be intractable

as their running time makes them infeasible even for very small values of n. (This is

evidenced by the values in the rightmost two columns in the table at the top of the next

page.)

LCCS National Workshop 5 Workbook

 137

Summary Graphs and Tables

The growth rates in computation time for the common time complexity functions discussed in

the preceding section are depicted in tabular and graphical17 format below.

N Constant Linear Quadratic Logarithmic Linearithmic Exponential Factorial

1 1 1 1 1 1 2 1

2 1 2 4 1 2 4 2

4 1 4 16 2 8 16 24

8 1 8 64 3 24 256 40320

16 1 16 256 4 64 65536 2.09228E+13

32 1 32 1024 5 160 4294967296 2.63131E+35

64 1 64 4096 6 384 1.84467E+19 1.26887E+89

128 1 128 16384 7 896 3.40282E+38 3.8562E+215

17 Source: Data Structures and Algorithms in Python (Goorich et. al., Page 122)

LCCS National Workshop 5 Workbook

 138

This table summarises the time complexities of some common search and sort algorithms.

 Best Case Average Case Worst Case

Linear Search 𝑂(1) 𝑂(𝑛) 𝑂(𝑛)

Binary Search 𝑂(1) 𝑂(𝑙𝑜𝑔2 𝑛) 𝑂(𝑙𝑜𝑔2 𝑛)

Simple (selection)
Sort

𝑂(𝑛2) 𝑂(𝑛2) 𝑂(𝑛2)

Bubble Sort 𝑂(𝑛) 𝑂(𝑛2) 𝑂(𝑛2)

Insertion Sort 𝑂(𝑛) 𝑂(𝑛2) 𝑂(𝑛2)

Quicksort 𝑂(𝑛 𝑙𝑜𝑔2 𝑛) 𝑂(𝑛 𝑙𝑜𝑔2 𝑛) 𝑂(𝑛2)

LCCS National Workshop 5 Workbook

 139

Activity #3: Analysis of Algorithms

The main objective of this task is to enable participants to plan and carry out their own

detailed analysis of algorithms.

In this activity teachers will work in pairs (pair programming) – all pairs are assigned the

same task outlined below.

Each pair opens the assigned Python analysis framework

The code is run and adapted according the instructions provided on the following pages in

order to complete each of the assigned tasks.

The task is to use the analysis framework to test the assertion that the linear search is

exponentially slower than the binary search.

A detailed description of each algorithm is provided elsewhere in this manual.

LCCS National Workshop 5 Workbook

 140

Task A: Analysis of Search Algorithms

Linear Search

The code below defines a function called linear_search. The function works by looking

for some value v in a list L. If v is found, the index of its position in L is returned; otherwise

the function returns -1.

import random

def linear_search(v, L):

 global comparisons

 for index in range(len(L)):

 comparisons = comparisons + 1

 if L[index] == v:

 return index

 return -1

Driver code ...

print("%s\t\t %s\t\t %s" %("List Size", "Found Index", "#Comparisons"))

for list_size in [1, 10, 100, 1000, 10000, 100000, 1000000]:

 some_list = list(range(list_size))

 random.shuffle(some_list) # randomise the list

 comparisons = 0

 target = -1 # worst case because -1 never exists

 pos = linear_search(target, some_list)

 print("%d\t\t %d\t\t %d" %(len(some_list), pos, comparisons))

1. Run the above program and record your output in the table below.

List Size Found Index #Comparisons

1

10

100

1,000

10,000

100,000

1,000,000

LCCS National Workshop 5 Workbook

 141

2. Based on what you have learned from the previous question:

a) what is the worst case time complexity for the linear search?

b) explain the significance of the following line in the code:

 random.shuffle(some_list) # randomise the list

3. Replace the line:

 target = -1 # worst case because -1 never exists

with the line:

 target = random.randrange(len(some_list)) # average case

Run the program again and record your output in the table below.

List Size Found Index #Comparisons

1

10

100

1,000

10,000

100,000

1,000,000

4. Based on the previous question what is the average case time complexity for the linear

search? (See: https://www.geeksforgeeks.org/analysis-of-algorithms-set-2-asymptotic-analysis/)

https://www.geeksforgeeks.org/analysis-of-algorithms-set-2-asymptotic-analysis/

LCCS National Workshop 5 Workbook

 142

Binary Search

The code below consists of a definition of a binary search function (binary_search) and a

test harness used to test this function. The function works by looking for some value v in a

list L. If v is found, the index of its position in L is returned; otherwise the function returns -1.

Read the program carefully.

import random

def binary_search(v, L):

 global comparisons

 low = 0

 high = len(L)-1

 while (low <= high):

 index = (low+high)//2

 comparisons = comparisons + 1

 if L[index] == v:

 return index

 elif L[index] < v:

 low = index + 1

 else:

 high = index - 1

 return -1

Driver code ...

print("%s\t\t %s\t\t %s" %("List Size (N)", "Found Index", "#Comparisons"))

for list_size in [1, 10, 100, 1000, 10000, 100000, 1000000]:

 some_list = list(range(list_size))

 comparisons = 0

 target = -1 # worst case because -1 never exists

 pos = binary_search(target, some_list)

 print("%d\t\t %d\t\t %d" %(len(some_list), pos, comparisons))

The program performs a binary search on seven different lists (some_list). The length of

each list varies, starting at 1 and increasing in powers of 10 up to 1,000,000. The contents of

each list is generated using the range function which returns a sequence of all the integers

from zero up to the size of the list minus 1. So for example, the third list which has a length

of 100 will contain the all integers, 0 through to 99.

For each list, a call is made to binary_search to look for a target value of -1. Since this

value does not exist, the test harness enables us to count the maximum number of

comparisons (comparisons) that the binary search makes for lists of different sizes.

LCCS National Workshop 5 Workbook

 143

1. Run the binary search program and record your output in the table below.

List Size Found Index #Comparisons

1

10

100

1,000

10,000

100,000

1,000,000

2. Replace the line:

 target = -1 # worst case because -1 never exists

with the line:

 target = random.randrange(len(some_list)) # average case

Run the program again and record your output in the table below.

List Size Found Index #Comparisons

1

10

100

1,000

10,000

100,000

1,000,000

3. What conclusion (if any) can you draw from the above results?

LCCS National Workshop 5 Workbook

 144

4. Use a calculator (or some other means) to complete the table below.

N 𝐥𝐨𝐠𝟐 𝑵

1

10

100

1,000

10,000

100,000

1,000,000

5. Repeat question 3.

6. What is meant by the best case time complexity of a search algorithm?

7. Record the best, average and worst case time complexities for linear and binary

searches in the table below.

 Best Case Average Case Worst Case

Linear Search

Binary Search

LCCS National Workshop 5 Workbook

 145

8. Modify the search programs provided so that you can complete the table below.

How do the linear and binary search algorithms behave when the list size doubles?

Consider cases where the target element exists and does not exist.

List Size

Binary Search Linear Search

Target Does
Not Exist

Target
Exists

Target Does
Not Exists

Target
Exists

1

2

4

8

16

32

64

128

256

512

1024

2048

4096

8192

16384

32768

65536

9. Plot a graph of the above results.

(You could use a spreadsheet package or a Python library)

10. In what situations (if any) does the linear search outperform the binary search

LCCS National Workshop 5 Workbook

 146

Task B: Analysis of Sorting Algorithms

Exercise 1: Simple (Selection) Sort

In this exercise participants explore the number of comparisons and exchanges made for the

simple (selection) sort algorithm.

import random

def simple_selection_sort(L):

 swaps = 0

 comparisons = 0

 #print("Before: ", L)

 # Traverse over all list elements

 for i in range(len(L)):

 # Find the minimum to the right of i

 min_idx = i

 for j in range(i+1, len(L)):

 comparisons = comparisons + 1

 if L[j] < L[min_idx]:

 min_idx = j

 # Swap minimum element with the current element

 L[i], L[min_idx] = L[min_idx], L[i]

 swaps = swaps + 1

 #print("After: ", aList)

 print("N(%d), #Comparisons(%d),#Swaps(%d)"%(len(L),comparisons, swaps))

Driver code ...

... run this code for a list sizes 5, 10, 100 and 1000

... run for already sorted, reversed and randomised lists

... record the #comparisons and #swaps in the manual

aList = list(range(5)) # generate the ordered list

#aList.reverse() # uncomment this line to reverse the list

#random.shuffle(aList) # uncomment this line to randomise the list

simple_selection_sort(aList)

Take some time to study the code and understand how the algorithm works.

When the above listing is run it will display the number of comparisons and the number of

swaps performed by the selection sort on a list of five already sorted elements (aList).

LCCS National Workshop 5 Workbook

 147

1. Run (and re-run) the program on the previous pages to record the number of

comparisons and swaps performed by the simple (selection) sort algorithm on ordered,

reversed, and randomised lists of lengths 5, 10, 100 and 1000. (Twelve runs.)

Record your results in the table below.

Notes:

1) To change the list length, modify the argument passed into the range function:

2) To reverse the list, just uncomment out the following line:

#aList.reverse()

3) To randomise the list, just uncomment out the following line:

#random.shuffle(aList)

List
Length (N)

List already Sorted Initial List Reversed Randomised List

#Compares #Swaps #Compares #Swaps # Compares #Swaps

5

10

100

1000

(Aside. The program was kept as simple as possible for clarity purposes. Of course, it would

be possible, and maybe even worthwhile, to modify the code so that all of the required

information can be generated in a single run.)

2. Use the above results to investigate the proposition that the simple selection sort uses

~𝑁2/2 comparisons and 𝑁 swap operations to sort a list of length 𝑁.

LCCS National Workshop 5 Workbook

 148

Exercise 2: Insertion Sort, Bubble Sort and Quicksort

Add definitions for these three sort algorithms to the program used for exercise 1. Now run

the program in the same manner as you did for the previous exercise and complete the

tables below for each of the sort algorithms.

A. Insertion Sort

List
Length (N)

List already Sorted Initial List Reversed Randomised List

#Compares #Swaps #Compares #Swaps # Compares #Swaps

5

10

100

1000

B. Bubble Sort

List
Length (N)

List already Sorted Initial List Reversed Randomised List

#Compares #Swaps #Compares #Swaps # Compares #Swaps

5

10

100

1000

C. Quicksort

List
Length (N)

List already Sorted Initial List Reversed Randomised List

#Compares #Swaps #Compares #Swaps # Compares #Swaps

5

10

100

1000

LCCS National Workshop 5 Workbook

 149

Now answer the following questions.

1. Use your data to verify the following for the insertion sort algorithm.

 Comparisons Swaps Notes

Best 𝑁 − 1 0

Average ~
𝑁2

4
 ~

𝑁2

4

Worst ~
𝑁2

2
 ~

𝑁2

2

2. Explain why, on average, the insertion sort is (slightly) faster that the simple (selection)

sort.

3. State which of the three algorithms you would recommend if the initial list was:

a) already (or almost) fully sorted

b) in reverse order

c) very large (made up of millions of elements)

LCCS National Workshop 5 Workbook

 150

Section 5 – Final Reflection

Two question to consider

1. How can I connect Computer Science with other subjects in my school?

2. What other areas of the LCCS course does algorithms have the potential to link in with?

(How can the LOs be interwoven?)

LCCS National Workshop 5 Workbook

 151

How will I provide students with opportunities to learn more about algorithms (in a

manner that is consistent with my own values)?

LCCS National Workshop 5 Workbook

 152

BLANK PAGE

