
National Workshop 6

Schedule

9.00am – 11.00am Session 1:
LCCS Higher Level Topics

11.00am – 1.00pm Session 2:
Creating an Inclusive Classroom: SEN for Computer Science

Lunch

2.00pm – 4.30pm Session 3:
Post Phase 1 CPD
Revision / Preparation for final Assessment

Digital technologies used in LCCS
have the potential to enhance

collaboration, learning and
reflection, by enabling students to

learn more efficiently and to
facilitate work that might not

otherwise be possible.

LCCS can be effectively mediated
through the use of a constructivist
pedagogical orientation which will

incorporate participatory and inquiry-
based learning activities (whole-class,

group, pair or individual).

Key Messages

LCCS aims to develop and foster the
learner’s creativity and problem solving

skills along with their ability to work
both independently and collaboratively.

The Turing Machine stands as the
modern definition of computability.

LCCS is suitable for all! This includes
students with SEN and of all ability
levels.

Professional Development continues for
Phase 1 teachers from September.

LCCS Higher-Level Topics

By the end of this session

Participants will be enabled to:

▪ Develop a deeper understanding of the time complexity and limits of algorithms

▪ Recognise situations when heuristics should and could be used as a method of problem solving

▪ Understand the significance of Turing Machines and how they operate

▪ Gain additional insights into higher-level topics such as:

software development methodologies, relational databases, recursion, user-centred design, Artifical

Intelligence (AI) and machine learning and communication protocols.

▪ Appreciate more fully the use of a variety of pedagogical approaches for Teaching, Learning and

Assessment of the above

LCCS Learning Outcomes – Higher Level

1.10 discuss when heuristics should and could be used and explain the limitations of using heuristics

1.16 compare two different user interfaces and identify different design decisions that shape the user experience

2.9 assemble existing algorithms or create new ones that use functions (including recursive), procedures, and modules

2.10 explain the common measures of algorithmic efficiency using any algorithms studied

2.12 describe the different types of logic gates and explain how they can be arranged into larger units to perform
more complex tasks

2.15 explain what is meant by the World Wide Web (WWW) and the Internet, including the client server model,
hardware components and communication protocols

2.21 critically reflect on and identify limitations in completed code and suggest possible improvements

3.2 create a basic relational database to store and retrieve a variety of forms of data types

3.5 structure and transform raw data to prepare it for analysis

3.9 analyse and interpret the outcome of simulations both before and after modifications have been made

3.10 explain the benefits of using agent-based modelling and how it can be used to demonstrate emergent
behaviours

Session Topics

Recursion (LO 2.9)

Comparing User Interfaces (LO 1.16)

Algorithmic Complexity (LO 2.10)

Turing Machines

Staged vs. Iterative (LO 1.19)

Relational Databases (LO 3.2)
Raw data (LO 3.5)

Artifical Intelligence / Machine Learning

Designing and Developing

Communication
Protocols (LO 2.15)

Heuristics (LO 1.10)

Roles and Responsibilities (LO 1.20)

Algorithmic Complexity

Heuristics

Overview (The Big Picture)

▪ Algorithms are used to solve problems

▪ Complexity allows us to classify algorithms (as ‘good’, ‘fair’ or ‘poor’ in terms of performance) and

therefore compare algorithms

▪ Problems can be classified as easy (polynomial, class P), hard (exponential, class NP) or unsolvable

(impossible)

▪ Heuristics is an approach to solving ‘hard’ problems

▪ If a problem can be solved using a Turing Machine it is computable

▪ Problems for which there is no Turing Machine solution cannot be solved

“An algorithm is a set of rules for getting a specific output from a specific input. Each step must be so

precisely defined that it can be translated into computer language and executed by machine”

Donald Knuth (1977)

Algorithmic Complexity (Efficiency)
▪ Algorithms have both space (memory) and time (CPU utilisation) requirements

▪ We want a fair way to analyse algorithms (complexity analysis) – needs to be machine
independent

▪ The main concern is to find the worst case performance. Why?

▪ How much time is required to find the smallest number in a sorted list? (1 operation =>
constant)

▪ What if the list was unsorted? (potentially n operations => linear time complexity)

▪ What about them amount of time it would take to find a specific element in a sorted list?
(search space is halved on each comparison => logarithmic time complexity)

▪ Elementary Sort algorithms have quadratic time complexity. This means that sorting 5
shelves of books will take 25 times longer than sorting a single shelf (not 5 times longer!)

Binary Search Example

Source: geekforgeeks.com

Algorithmic Complexity (Efficiency)

Big-O notation provides a way to talk about the kind of relationship that holds between the size
of the problem and the program running time. A shorthand notation for measuring worst case
complexities. It is inexact by design.

O(1) Constant Complexity

O(n) Linear Complexity

O(𝑛2) Quadratic Complexity

ሻO(log2 𝑛 Logarithmic Complexity

ሻO(𝑛 log2 𝑛 Linearithmic Complexity

O(2𝑛) Exponential Complexity

O(n!) Factorial Complexity
The number of operations (y-axis) versus input size n

Summary: Algorithmic Time Complexity

Programmers need to be aware of time complexity of the algorithms they write
(or choose to use)

Algorithms that have constant, linear and polynomial time complexities (i.e.
tractable algorithms) are all considered useful. Be careful with quadratics!

Algorithmic Complexity: Limits of Algorithms

Suppose you decide to ride a bicycle around Ireland
- you will start in Cavan!
- the goal is to visit Dublin, Cork, and Galway before

returning to Cavan Cavan

Galway

Cork

Dublin

What is the best itinerary?
- how can you minimise the number of kilometers and

yet make sure you visit all the cities?

Example: The Travelling Salesperson Problem (TSP)

For many applications the number of “cities” (n) can be thousands or more.

While it is not likely anyone would want to plan a bike trip to thousands of
cities the solution to finding the shortest tour of a large number of cities can
be applied to (is the same as) many important “real world” problems:

▪ transportation: school bus routes, service calls, delivering meals, post/parcel deliveries,
delivery of online purchases (e.g. Amazon)

▪ manufacturing: an industrial robot that drills holes in printed circuit boards
▪ design: VLSI (microchip) layout
▪ communication: planning new telecommunication networks
▪ space exploration: minimise the use of fuel in targeting and imaging manoeuvres for the

pair of satellites involved in NASA Starlight space interferometer program
▪ biology: to compute DNA sequences

Sources: Lero and Explorations in Computing (2012), John S. Conroy

Real World Applications

Algorithmic Complexity: Limits of Algorithms

A Brute-Force approach would find all itineraries and
then pick the best.

Cavan

Galway

Cork

Dublin

Cavan – Dublin – Cork – Galway – Cavan 747km

Algorithmic Complexity: Limits of Algorithms

A Brute-Force approach would find all itineraries and
then pick the best.

Cavan

Galway

Cork

Dublin

Cavan – Dublin – Cork – Galway – Cavan 747km

834km

747km

939km

834km

939km

Cavan – Dublin – Galway – Cork – Cavan

Cavan – Galway – Cork – Dublin – Cavan

Cavan – Galway – Dublin – Cork – Cavan

Cavan – Cork – Galway – Dublin – Cavan

Cavan – Cork – Dublin – Galway – Cavan

Observations? (Evaluation and Testing, Computational Thinking – recognising patterns)

The number of possible tours of a map with n cities is (n − 1)! / 2

The number of tours grows incredibly quickly as we add cities to
the map

#cities #tours

5 12

6 60

7 360

8 2,520

9 20,160

10 181,440

The number of tours for 25 cities is 310,224,200,866,619,719,680,000

Cavan

Galway

Cork

Dublin

Algorithmic Complexity: Limits of Algorithms

Wexford

Limerick

Edpuzzle Activity

Heuristics
▪ An approach to problem solving.

▪ Mental shortcuts that can be used to make a quick decision.

▪ Heuristics are the strategies derived from previous experiences with similar problems.

▪ Not guaranteed to be optimal (but usually take less time than would be required to find an
optimal solution). Limitations lie in the trade-offs e.g. correctness vs. performance.

▪ Suitable when finding an optimal solution is impractical or impossible e.g. TSP heuristic may
be to pick whatever is currently the best next step regardless of whether that prevents (or
even makes impossible) good steps later (known as the greedy algorithm).

▪ Some common examples of heuristics include trial and error, a rule of thumb, an educated
guess and intuitive judgement

Source: http://www.popflock.com/learn?s=Heuristic

http://www.popflock.com/learn?s=Heuristic

Heuristics (ctd.)

The trade-off criteria for deciding whether to use a heuristic for solving a given problem:

▪ Optimality: When several solutions exist for a given problem, does the heuristic guarantee that the best

solution will be found? Is it actually necessary to find the best solution?

▪ Completeness: When several solutions exist for a given problem, can the heuristic find them all? Do we

actually need all solutions? Many heuristics are only meant to find one solution.

▪ Accuracy and precision: Can the heuristic provide a confidence interval for the purported solution? Is the

error bar on the solution unreasonably large?

▪ Execution time: Is this the best known heuristic for solving this type of problem? Some heuristics

converge faster than others. Some heuristics are only marginally quicker than classic methods.

Source: https://softjourn.com/blog/article/heuristic-programming

When we cannot solve a problem exactly, one common approach is to use a

heuristic instead. A heuristic is a type of algorithm that does not necessiarily

give a correct answer, but tends to work well in practice.

https://softjourn.com/blog/article/heuristic-programming

We now turn our attention to focus
on a fundamental question of

Computer Science:

What is computable?

Turing Machines

https://www.turing.org.uk/

https://www.turing.org.uk/

Turing Machines - Introduction

G 1 2
down

up

updown

down

up

The illustration below is of an elevator represented as a finite-state machine

▪ Circles represent states (in this case floors)

▪ Arrows between circles represent transitions between states

▪ The labels on each transition represents the button press event

What happens when we are on the ground floor and press the UP button?
What happens when we are on the ground floor and press the DOWN button?

Turing Machines - Introduction

The Turing Machine (TM) was invented in 1936 by Alan Turing.
It is a basic abstract symbol manipulating device that can be used to simulate
the logic of any computer that could possibly be constructed.

Although it was not actually constructed by Turing, its theory yielded many
insights.

Turing Machines - Introduction
A Turing Machine consist of three components as follows:

1. An infinitely long tape made up of individual cells. Each cell can contain a single
character – typically 1, 0, or B (blank)

2. A read/write head pointed at an individual cell

3. A controller (aka finite-state machine) which instructs the read/write head what to do

Read/Write Head

… Infinitely long tape

Controller

Machine

State

Finite

B B 1 1 0 1 0 0 0 1 B …

A schematic representation of a Turing Machine

Initially the tape is inscribed with a sequence of characters – called the input

The operation of the Turing Machine is controlled by the finite-state machine (controller).

Each transition involves:
- Reading
- Writing
- Moving
- Updating

Turing Machines - Operation

… …0 01 1 0 1For example:

The operation takes place as a sequence of steps known as transitions

The controller decides for a given (input character, state) pair, the (output character,
state) pair - know as a transition.

S1

(1, 0, R)

Turing Machines - Operation

Transitions can be expressed using:

The above state transition table and diagram shows a single transition which says:

When in state S1 and the symbol being read is a one, write a zero, move right and
remain in state S1

state transition tables state transition diagramsOR

S1 S2
(0, 1, R)

… …0 0B 0 1 B

… …0 0B 1 1 B

Turing Machines - Operation

The illustration below depicts a TM which defines a transition from state S1 to S2
when the current symbol being read in a zero.

After the transition has been completed the symbol zero has been replaced with a 1,
the read/write head has been moved right and the new state is set to S2

Read/Write Head

Controller

Tape

The result of the computation (output) is the sequence of characters left on the tape if
and when the Turing Machine halts.

Turing Machines – States

At any given time, a TM is said to be in a particular state. States are usually denoted
by the letter S followed by a number e.g. S2 is taken to mean state two.

S0 is conventionally used to denote the initial state. This is the state the TM is in
before it starts to operate.

A double circle is used to denote the final or halting state. This is the state the TM is
in when it finishes.

For example,

S0 S1
(B, 1 , R)(B, B, R)

(1, 1, R)

S2

Earlier we asked the question:
How do we define computability?

Now we can provide the answer:
A task is computable if it can be
carried out by a Turing Machine

Turing Machines – Significance

Each group will trace through the
operation of a Turing Machine

which will be assigned to them.

Turing Machine Activity

Think

Pair

Share

Square

Turing Machines – Activity – Problem #1

Test input: BB111B … …B 1B 1 1 B

Initial State: S0 S0 S1
(B, B, R)

S3

(B, B , R)

(1, B , R)

Turing Machines – Activity – Problem #2

Test input: 111011 … …1 1B 1 0 1 1 B

Initial State: S0 S3S0 S1 S2
(B, B , L) (1, B , R

(1, 1, R)

(0, 1, R)

(1, 1, R)

Turing Machines – Activity – Problem #3

Test input: B011001B … …0 1B 1 0 0 1 B

Initial State: S0 S0 S1 S2
(B, B , L) (B, B, R)

(0, 1, R)

S3

(1, 0 , R)

(0, 1 , R)

(1, 0, R)

(0, 0, L)

(1, 1, L)

Turing Machines – Activity Handout

… …0 1B 1 0 0 1 B
Initial State: S0

After Step 1:

After Step 2:

…

Final Output

Initial Input

… …

… …

… …

…

Next State:

Next State:

Turing Machines – Example (unary increment)

Test input: 111 (3) … …B 1B 1 1 B B B

Required output: 1111 (4) … …B 1B 1 1 1 B B

S0 S1
(B, 1 , R)(B, B, R)

(1, 1, R)

S2

Turing Machines – Example (unary increment)

Test input: 111 (3) … …B 1B 1 1 B B B

Required output: 1111 (4) … …B 1B 1 1 1 B B

S0 S1
(B, 1 , R)(B, B, R)

(1, 1, R)

S2

… …B 1B 1 1 B B BState: S0

Turing Machines – Example (unary increment)

Test input: 111 (3) … …B 1B 1 1 B B B

Required output: 1111 (4) … …B 1B 1 1 1 B B

S0 S1
(B, 1 , R)(B, B, R)

(1, 1, R)

S2

… …B 1B 1 1 B B BState: S1

Turing Machines – Example (unary increment)

Test input: 111 (3) … …B 1B 1 1 B B B

Required output: 1111 (4) … …B 1B 1 1 1 B B

S0 S1
(B, 1 , R)(B, B, R)

(1, 1, R)

S2

… …B 1B 1 1 B B BState: S1

Turing Machines – Example (unary increment)

Test input: 111 (3) … …B 1B 1 1 B B B

Required output: 1111 (4) … …B 1B 1 1 1 B B

S0 S1
(B, 1 , R)(B, B, R)

(1, 1, R)

S2

… …B 1B 1 1 B B BState: S1

Turing Machines – Example (unary increment)

Test input: 111 (3) … …B 1B 1 1 B B B

Required output: 1111 (4) … …B 1B 1 1 1 B B

S0 S1
(B, 1 , R)(B, B, R)

(1, 1, R)

S2

… …B 1B 1 1 B B BState: S1

Turing Machines – Example (unary increment)

Test input: 111 (3) … …B 1B 1 1 B B B

Required output: 1111 (4) … …B 1B 1 1 1 B B

S0 S1
(B, 1 , R)(B, B, R)

(1, 1, R)

S2

… …B 1B 1 1 1 B BState: S2

Group Activity

Tick the column that best describes your knowledge
in relation to each topic

KWHL – Page 27

Know? Want to
know?

How will I
find out
more?

What have
I learned?

Active Learning

An Integrated Approach to Learning, Teaching and Assessment

Active Learning Tools - Fishbone

Active Learning Tools - Placemat

Activity: Topics and Groups

• Software Development and Management

• Relational Databases

• Recursion

• User-Centred Design

• AI and Machine Learning

• Communication Protocols

Group 1 : 7710g7172nuy

Group 2 : qklzwqf6h9hx

Group 3 : bv1ntbl6arh9

Group 4 : ir6njapfd7k3

Group 5 : o4r1npyac4c6

Group 6 : 7i4lyjo08fee

https:// pdstlccs.padlet.org/cpd/

● Conclusion

Software Development Methodologies

1. Preliminary Analysis – requests are reviewed
Deliverable - feasibility analysis document

2. Systems Analysis – if approved, determine the system requirements
for new system

Deliverable – systems requirement document

3. Systems Design – converts system analysis requirements into system
design document deliverable

4. Programming – coding commences using design documents

5. Testing – ensures that the code functions according to requirements

6. Implementation – converting from old system to
new system

Training, documenting functions, and data
conversion

7. Maintenance – support for reporting
prioritizing, and fixing bugs

Roles and Resposnibilities

• Project Sponsor

• Project Manager

• Analyst (Business Analyst)

• Designer (Graphic Designer, UX Designer)

• System Architect (Technical Lead)

• Programmer (Developer, Software Engineer)

• Tester (QA Engineer)

• Technical Writer

Links between Artifical Intelligence and Machine Learning

Source: https://www.javatpoint.com/subsets-of-ai

https://www.javatpoint.com/subsets-of-ai

Relational Databases

▪ Attribute: A characteristic of the data in the table, describing a field or cell in a table.

▪ Relational Database: A structured collection of related data stored in tables

▪ Database: Any collection of data

▪ Table: A set of data elements (values) organised by rows (records) and columns
(values)

▪ Primary Key: A unique identifier for a row in a table

▪ Foreign Key: An attribute in a table that is used as a primary key in another table i.e.
provides the relationship by linking one table to another

Recursion
def linear_search_v6(v, L, index=0) :

if len(L) != 0:

if L[0] == v:

return index

r = linear_search_v6(v, L[1:], index+1)

if r != -1:

return r

return -1

Communication Protocols

Source: https://slideplayer.com/slide/13069007/

https://slideplayer.com/slide/13069007/

© PDST 2019

