
National Workshop 1

Computational Thinking

What is Computational Thinking?

• Problem Solving Methods: for a ‘Computer’

• Help

• Several Models: eg 4 Concepts / Pillars:

• Decomposition

• Pattern Recognition

• Abstraction

• Algorithm Formation

• Different subjects… even English Literature

Looking at the Monty Hall Problem

.

Computational Thinking

• Monty Hall Problem

• How to Subtract

• London Underground

• Money – Change (Activity): White board

• Sisters

Computational Thinking

1.Modern Primary School way.
2.Old Primary school way.
3.Shop Assistant.
4.Dart player.

The Tube

How is abstraction used? – Menti 8240 9970

CT Activity 1

.

CT – Activity 2

Who has more sisters, boys or girls?

Teaching and Learning
Programming

1 - Interactive information systems
2 - Analytics
3 - Modelling and simulation
4 - Embedded systems.

The four applied learning tasks explore the four following contexts:

Programming and LCCS
"The role of programming in computer science is like that of practical work in the other subjects—

it provides motivation, and a context within which ideas are brought to life. Students learn

programming by solving problems through computational thinking processes and through practical

applications such as applied learning tasks." LCCS specification (2017)

“Teaching and learning programming is considered one of the grand challenges of
computing education”

Casperen, 2018

A Grand Challenge!

“Programming is a hard craft to master and its teaching is challenging”
Crick, 2017

“Programming is not an easy subject to be studied”
Lahtinen et. al., 2005

“Teaching students to program is a complex process”
Luxton-Reilly et. al., 2018

How did you learn how to program?

What were main challenges for you?

 the underlying machine that one is trying to control (Notational Machine)

 the problem to be solved (Orientation)

 the language syntax and semantics (Notation / Vocabulary)

 how to apply the language to solve problems (Application / Design)

 the development environment (Pragmatics and Perspectives)

 different levels of abstraction

Learning Challenges faced by Novice Programmers
Programming IS difficult to learn because it requires and understanding of:

Cognitive Load

 Read before you write – there is clear evidence that tracing and

explaining code helps (Lister, numerous papers)

 Levels of abstraction - problem at higher-level; syntax at lower-

level (Perrenet & Kassenbrod, 2006)

 Threshold concepts in programming cause difficulties for students

(Sanders & McCartney, 2016)

 Misconceptions abound (research from 1980s to current day –

Juha Sorva)

 Growth mindset – popular approach, with some research evidence

in Computing (Cutts, 2010)

 Programming Pedagogies help – dialogue and discussion at a

logical level help students (Porter et al, 2012)

What research tells us about learning programming

PRIMM

PRIMM

A way of structuring programming lessons that focuses on:

- Reading before Writing

- Student Collaboration

- Reducing Cognitive Load

- Well-chosen starter programs

- Ownership Transfer

Sources:

1. https://blogs.kcl.ac.uk/cser/2017/02/20/exploring-pedagogies-for-teaching-programming-in-school/ (Sue Sentence)

2. https://blogs.kcl.ac.uk/cser/2017/09/01/primm-a-structured-approach-to-teaching-programming/ (Sue Sentence)

3. Sue Sentance, Jane Waite & Maria Kallia (2019) Teaching computer programming with PRIMM: a sociocultural perspective, Computer

Science Education, 29:2-3, 136-176, DOI: 10.1080/08993408.2019.1608781

https://blogs.kcl.ac.uk/cser/2017/02/20/exploring-pedagogies-for-teaching-programming-in-school/
https://blogs.kcl.ac.uk/cser/2017/09/01/primm-a-structured-approach-to-teaching-programming/

PRIMM

 Predict: given a working program, what do you think it will do? (at a

high level of abstraction)

 Run: run it and test your prediction

 Investigate: What does each line of code mean? (get into the nitty

gritty - low level of abstraction - trace/annotate/explain/talk about parts)

 Modify: edit the program to make it do different things (high and low

levels of abstraction)

 Make: design a new program that uses the same nitty gritty but that

solves a new problem.

PRIMM – Example (1 of 2)
1. import random

2.

3. number = random.randint(1, 10)

4. #print(number)

5.

6. guess = int(input("Enter a number between 1 and 10: "))

7.

8. if guess == number:

9. print("Your guess was correct")

10. print("Goodbye")

11.else:

12. print("Incorrect guess")

13. print("Goodbye")

Predict: Discuss in pairs.

What do you think the

above program will do?

Be precise. Be succinct.

Things to think about. How to …

Investigate: Devise some questions to elicit student learning and curiosity. What if … Try … Explain …

Run: Download the

program / Key it in. Execute

the program. Test your

prediction.

Were you correct?

Modify: Suggest some simple extensions / modifications for students to make in pairs. Same program.

Make: Formulate new problems that are conceptually similar. New context. New program (copy+paste)

PRIMM – Example (2 of 2)

Investigate:

1. Uncomment line 4. What happens?

2. What is the purpose of line 4?
3. What would happen if you removed int from line 6?

4. Try changing == to != on line 8. What happens?

5. What if == was changed to = ?

6. What would happen if you don’t enter an integer?

7. Try removing a bracket (anywhere). What happens?

8. Annotate each line of the program.

Modify:

1. Change the program so that it generates a number between 1 and 100? Can you be sure?
2. Change the program so that there is only one print("Goodbye") statement (without altering the logic)

3. Extend the program so that it tells the user if the number entered was too high or too low

4. Design an algorithm based on the program that would give the user 3 guesses

5. Get the computer to generate 4 numbers (lotto) OR ask the user how many numbers to generate?

Make:

1. Write a program that generates two numbers and prompts the user to enter their product

Conclusions

1. Programming IS difficult (for students to learn and teachers to teach)

2. Pedagogies are proven to work

3. Read/Trace code before you write

4. Constructivist approach is important

5. Growth mindset is at least as important as natural ability

6. Student-centric approach (teachers adopt a guide-on-the-side rather than a sage-on-the-stage approach)

Conclusions

“The teacher should help, but not too much and not too little, so that the student shall have

a reasonable share of the work” and, “If the student is not able to do much, the teacher

should leave him at least with some illusion of independent work.”

George Polya, How To Solve It

Resources

Plus lots more ….

Workspace: pdst_phase_3

computerscience@pdst.ie @PDSTcs

mailto:computerscience@pdst.ie

30

© PDST 2021

