
National Workshop 2

Schedule

Session 1
Introduction

Teaching and Learning Programming: Challenges and Pedagogies

11.00 – 11.30 Tea/Coffee

Session 2 Computational Thinking

13.00 – 14.00 Lunch

Session 3
Resource Development

Curriculum Planning & Assessment

Q&A

2

Workspace = pdst_phase_3

@PDSTcs

computerscience@pdst.ie

Key Messages

ALTs
There are many ways to use

the LCCS specification.

LCCS can be mediated

through a constructivist

pedagogical approach.

Digital technologies can be used to enhance

collaboration, learning and reflection.

ALTs provide an opportunity to

teach theoretical aspects of LCCS.

LCCS is a subject for everyone

All learning outcomes (LOs) are

interwoven and should be studied

concurrently at different stages of

the course and should NOT be

studied in a linear order

Session 1
Introduction

By the end of this session :

Participants will have be enabled to:

• reflect on the key messages of National Workshop 1

• develop their understanding of common challenges experienced by teachers

in teaching programming, and students in learning how to program

• further their knowledge and skills of Python

• participate in a constructivist pedagogic exercise

National Workshop 1

Quick Recap

https://www.mentimeter.com/s/808d13590aee2c126cfb76044464a98b/6904e5f73c08

Recap on NW1 - Culture and Expectations

Respect

Collaboration

Open-

mindedness

Supportive /

Community

Positive

Growth Mindset
Community of Practice

LCCS Specification Learning Outcomes

Applied Learning Tasks (ALTs)

Introduction to PRIMM

Culture and Expectations

CPD Programme

The Role of the PDST

Teachers are Key
Computational Thinking

Recap on NW1

Non-linear
Constructivism

(student-centred)
CS For All

Programming

Pedagogy

Sept ’21 June ’21

Skills Workshop

micro:bit (Elective)

Oct ’21 Nov ’21
Jan ’22

CoP

National Workshop 2

Clusters (CoP)
Skills Workshop

Python II

CoP

Winter

Webinar
National Workshop 3

CoP

Feb ’22

Clusters (CoP)

Spring

Webinar

Apr ’22

National Workshop 4

Skills Workshop

HTML/CSS/JavaScript

CoP CoP CoP

Dates for your Diary for 2021/22

Day 2 of NW2 Tuesday 28th September (cohorts 1&3) and Wednesday 29th September (cohorts 2&4)

ALT4 + Pedagogic Content Knowledge (PCK) (ALT2 + PCK) (ALT3 + PCK)

Breakout #1

… to what extent was your thinking extended in

relation to LCCS and the Curriculum Specification

Switch video / sound ON

Check in – introduce yourselves

Looking back at NW1 …

10 minute breakout

Teaching and Learning
Programming:
Challenges and Pedagogies

What is the value of the variable x after the execution

of this Python code?

Question 1

x = 23

y = 17

x = x + y

x = y

A. 40

B. 57

C. 6

D. 17

E. None of the above

Contents
▪ Introduction - Programming and LCCS

▪ Learning Challenges faced by Novice Programmers

▪ Teaching Challenges – A Phase 1 Teacher’s Experience

▪ Breakout #1 – MCQs

▪ Successful Strategies and Pedagogies used by Teachers

▪ Breakout #2 - PRIMM

▪ Conclusion

LCCS Strands

1 - Interactive information systems
2 - Analytics
3 - Modelling and simulation
4 - Embedded systems.

The four applied learning tasks explore the four following contexts:

Programming and LCCS
"The role of programming in computer science is like that of practical work in the other subjects—
it provides motivation, and a context within which ideas are brought to life. Students learn
programming by solving problems through computational thinking processes and through practical
applications such as applied learning tasks." LCCS specification (2017)

Question 2

What output does the Python code below display?

x = 0

y = (x == 21%7)

print(y)

A. 0

B. 3

C. False

D. True

E. None of the above

Learning Challenges faced
by Novice Programmers

“Teaching and learning programming is considered one of the grand challenges of
computing education”

Casperen, 2018

A Grand Challenge!

“Programming is a hard craft to master and its teaching is challenging”
Crick, 2017

“Programming is not an easy subject to be studied”
Lahtinen et. al., 2005

“Teaching students to program is a complex process”
Luxton-Reilly et. al., 2018

How did you learn how to program?

What were main challenges for you?

▪ the underlying machine that one is trying to control (Notational Machine)

▪ the problem to be solved (Orientation)

▪ the language syntax and semantics (Notation / Vocabulary)

▪ how to apply the language to solve problems (Application / Design)

▪ the development environment (Pragmatics and Perspectives)

▪ different levels of abstraction

Learning Challenges faced by Novice Programmers
Programming IS difficult to learn because it requires an understanding of:

Cognitive Load

Teaching Novice Programmers:
Teacher Challenges

Phase 1 Teacher Input (Teacher Challenges)

Challenges relating to teachers Challenges relating to students

▪ Differences from other subjects

▪ Perceptions and Expectations

▪ Misconceptions

▪ Teacher’s Knowledge & Self-efficacy

▪ Digital Literacy

▪ Digital Divide

▪ Differentiation

Additional Challenges

▪ Time

▪ Attendance

▪ Homework

▪ Students not engaged

▪ Students not practicing

▪ Students not understanding

Problem Solving Skills

Source: Sentance, S., Csizmadia, A. Computing in the curriculum: Challenges and strategies from a teacher’s perspective. Educ Inf Technol 22, 469–495 (2017).

Question 3
Given x = 20 and y = 9 which of the following Python

statements does NOT output the integer 2 exactly?

print(x//y)

print(x%y)

print(int(x/y))

print(int(x/(y+1)))

A.

B.

C.

D.

E.

print(x/(y+1))

5 minute stretch break

27

Breakout Activity #1

Question 4
What output does the Python code below display?

def calculate(y, x):

a = x

b = y + 1

return a + b + y

x = 1

y = x + 1

print(calculate(x+1, y))

A. 4

B. 5

C. 6

D. 7

E. 8

Group Activity / Breakout

30

Successful Strategies and
Pedagogies for Teaching
Programming to Novices

Peer Instruction
Well-evidenced pedagogical strategy

Combination of:

- Flipped learning

- Collaborative working

- Well-chosen MCQs

x = 0

y = (x == 21%7)

print(y)

Most effective where there are close distractors and

known misconceptions

For more information on peer instruction see http://peerinstruction4cs.org

A. 3
B. False
C. True
D. Syntax

Error

Successful Strategies and Pedagogies

Computational Discourse

Topic Ordering

Problem Based Learning

PRIMM
(Use-Modify-Create)

Program Tracing / Debugging

Test Driven Development

Pair Programming

Parson’s Problems

Game-based Pedagogy

Physical Computing

Peer Instruction

Unplugged Activities

Block Programming

Modelling Scaffolding Progression Context Constructivism

Inquiry Based Learning

Active Learning

Fill in the blanks

Find the ‘bug’

Fix the syntax

Code Commenting

Metacognition

Turtle Graphics Semantic Waves

ReflectionNotational Machine

Critical Reflection

Example: Fix the syntax

Run the program to see what happens

Can you fix the syntax error?

PRINT("Hello World")

Now continue with the remaining 4 print statements ...

You will need to uncomment each line and run the program to reveal each syntax error

#print(Hello World)

#print('Hello World")

#print "Hello World"

#print("Hello", World)

1. Question: Is the following (uncommented) line syntactically correct?

print("Hello", 123)

2. Create (and fix) your own syntax errors

3. Try to create an indentation syntax error … looks like this →

4. What happens if all the print statements are uncommented?

Follow-up Activity:

Example: Find the ‘bug’ – semantic error

Find and fix the 'bug' in the program below

The intention is to add a and b and display the answer

a = 3

b = 4

sum = a + 3

print(a, "+", b, "=", sum)

Follow-up Activity:

Would any of the following (uncommented) lines work in place of the print above

#print(3, "+", 4, "=", sum)

#print("3 + 4 =", sum)

#print("3 + 4 = 7")

#print(3 + 4)

#print(a + b)

Example: Insert comments

Insert comments to explain each line of code below

(the first one has been done to get you started)

x = 23 # Assign the value 23 to the variable x

y = 17

print("The value of x is", x)

print("The value of y is", y)

x = x + y

print("The value of x is", x)

x = y

print("The value of x is", x)

Example: Fill in the blanks

https://github.com/pdst-lccs/lccs-python/blob/master/Section%205%20-%20Programming%20Logic/Guess%20game%20v3%20-%20multiple%20if.py

Example 1: Parson’s Problem

elif guess < number:

print("Hard luck!")

print("Too low")

else:

print("Hard luck!")

print("Too high")

if guess == number:

print("Correct")

print("Well done!")

guess = int(input("Enter a number between 1 and 10: "))

import random

number = random.randint(1, 10)
print("Goodbye")

Arrange the blocks of code below into the correct order

The final program should generates a random number, prompts the user to enter a guess and display a

message telling the user if the guess was correct, too low or too high.

The program should always display the string Goodbye at the end.

Example 2: Parson’s Problem
Re-arrange the jumbled up lines shown below so that the program prompts the end-user to enter two
integers and then computes and displays their sum.

Warning! There are three extra lines that you won’t need.

PRIMM

PRIMM

A way of structuring programming lessons that focuses on:

- Reading before Writing

- Student Collaboration

- Reducing Cognitive Load

- Well-chosen starter programs

- Ownership Transfer

Sources:

1. https://blogs.kcl.ac.uk/cser/2017/02/20/exploring-pedagogies-for-teaching-programming-in-school/ (Sue Sentence)

2. https://blogs.kcl.ac.uk/cser/2017/09/01/primm-a-structured-approach-to-teaching-programming/ (Sue Sentence)

3. Sue Sentance, Jane Waite & Maria Kallia (2019) Teaching computer programming with PRIMM: a sociocultural perspective, Computer

Science Education, 29:2-3, 136-176, DOI: 10.1080/08993408.2019.1608781

https://blogs.kcl.ac.uk/cser/2017/02/20/exploring-pedagogies-for-teaching-programming-in-school/
https://blogs.kcl.ac.uk/cser/2017/09/01/primm-a-structured-approach-to-teaching-programming/

PRIMM

▪ Predict: given a working program, what do you think it will do? (at a

high level of abstraction)

▪ Run: run it and test your prediction

▪ Investigate: What does each line of code mean? (get into the nitty

gritty - low level of abstraction - trace/annotate/explain/talk about parts)

▪ Modify: edit the program to make it do different things (high and low

levels of abstraction)

▪ Make: design a new program that uses the same nitty gritty but that

solves a new problem

PRIMM – Example (1 of 2)
1. import random

2.

3. number = random.randint(1, 10)

4. #print(number)

5.

6. guess = int(input("Enter a number between 1 and 10: "))

7.

8. if guess == number:

9. print("Your guess was correct")

10. print("Goodbye")

11.else:

12. print("Incorrect guess")

13. print("Goodbye")

Predict: Discuss in pairs.

What do you think the

above program will do?

Be precise. Be succinct.

Breakout Activity:

Investigate: Devise some questions to elicit student learning and curiosity. What if … Try … Explain …

Run: Download the

program / Key it in. Execute

the program. Test your

prediction.

Were you correct?

Modify: Suggest some simple extensions / modifications for students to make in pairs. Same program.

Make: Formulate new problems that are conceptually similar. New context. New program (copy+paste)

PRIMM – Example (2 of 2)
Investigate:

1. Uncomment line 4. What happens?

2. What is the purpose of line 4?
3. What would happen if you removed int from line 6?

4. Try changing == to != on line 8. What happens?

5. What if == was changed to = ?

6. What would happen if you don’t enter an integer?

7. Try removing a bracket (anywhere). What happens?

8. Annotate each line of the program.

Modify:

1. Change the program so that it generates a number between 1 and 100? Can you be sure?
2. Change the program so that there is only one print("Goodbye") statement (without altering the

logic)

3. Extend the program so that it tells the user if the number entered was too high or too low

4. Design an algorithm based on the program that would give the user 3 guesses

5. Get the computer to generate 4 numbers (lotto) OR ask the user how many numbers to generate?

Make:

1. Write a program that generates two numbers and prompts the user to enter their product

Breakout Activity #2

46

PRIMM
Group Activity

Conclusions, Resources
and References

1. Programming IS difficult (for students to learn and teachers to teach)

2. Pedagogies are proven to work

3. Read/Trace code before you write

4. Constructivist approach is important

5. Growth mindset is at least as important as natural ability

6. Student-centric approach (teachers adopt a guide-on-the-side rather than a sage-on-the-stage approach)

Conclusions

“The teacher should help, but not too much and not too little, so that the student shall have

a reasonable share of the work” and, “If the student is not able to do much, the teacher

should leave him at least with some illusion of independent work.”

George Polya, How To Solve It

Resources

Plus lots more ….

© PDST 2021

