National Workshop 2
Session 2
Computational Thinking
By the end of this session:

Participants will have been enabled to:

• develop their understanding of Computational Thinking (CT) concepts
• consider the questions What is Computational Thinking and Why is Computational Thinking important?
• reflected on successful pedagogies for teaching Computational Thinking skills
LCCS Curriculum Specification

https://www.curriculumonline.ie
What does the specification say?

“Computer science is the study of computers and algorithmic processes. Leaving Certificate Computer Science includes how programming and **computational thinking** can be applied to the solution of problems, and how computing technology impacts the world around us.”

[LCCS Spec. Page 2, paragraph 1]

<table>
<thead>
<tr>
<th>Strand 1: Practices and principles</th>
<th>Strand 2: Core concepts</th>
<th>Strand 3: Computer science in practice</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computers and society</td>
<td>Abstraction</td>
<td>Applied learning task 1</td>
</tr>
<tr>
<td>Computational thinking</td>
<td>Algorithms</td>
<td>- Interactive information systems</td>
</tr>
<tr>
<td>Design and development</td>
<td>Computer systems</td>
<td>Applied learning task 2 - Analytics</td>
</tr>
<tr>
<td></td>
<td>Data</td>
<td>Applied learning task 3</td>
</tr>
<tr>
<td></td>
<td>Evaluation/Testing</td>
<td>- Modelling and simulation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Applied learning task 4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Embedded systems</td>
</tr>
</tbody>
</table>
What does the specification say?

"The role of programming in computer science is like that of practical work in the other subjects — it provides motivation, and a context within which ideas are brought to life. Students learn programming by solving problems through computational thinking processes and through practical applications such as applied learning tasks." LCCS specification (2017)
What is Computational Thinking?
We only THINK when we are confronted with a PROBLEM!

John Dewey
What is Computational Thinking?

Computational thinking is a way of solving problems, designing systems, and understanding human behaviour that draws on concepts fundamental to computer science… a fundamental skill for everyone, not just computer scientists. (Wing, 2006)

"Computational Thinking is the thought processes involved in formulating problems and their solutions so that the solutions are represented in a form that can be effectively carried out by an information-processing agent.” (Wing 2011)
Devise an algorithm ...

The aim is swap the positions of the black and white pieces.

Pieces can move either by sliding into an adjacent empty square, or by jumping a single adjacent piece into the empty square immediately beyond.
“Computational Thinking is about connecting computing to things in the real world” (Martin, 2018)

Source: http://advocate.csteachers.org/2018/02/17/rethinking-computational-thinking/
Simple Daily Examples

Looking up a name in an alphabetically sorted list
 Linear: start at the top
 Binary search: start in the middle

Standing in a queue at a bank, supermarket, check in desk, passport control
 Performance analysis of task scheduling

Taking your children to football, music and the swimming pool
 Traveling salesman (with more constraints)

Cooking a gourmet meal
 Multi-tasking, Parallel processing:

Cleaning out your garage
 Keeping only what you need vs. throwing out stuff when you run out of space.

Storing away your child’s toys scattered on the floor
 Using hashing (e.g., by shape, by color)
Pillars of Computational Thinking

Decomposition – breaking down problems into more manageable sub-problems.

Patterns recognition involves looking for parts of a problem/solution that are similar to something that has been solved before. This leads to a generalised solution – transforming problems and re-using solutions.

Abstraction – the process of extracting the important details and hiding unnecessary detail.

Algorithmic thinking refers to how solutions can be expressed as a set of instructions (as opposed to a specific, single answer).
Why is Computational Thinking Important?
Why is Computational Thinking Important?

- It moves students beyond being technologically literate
- It creates problem solvers instead of software technicians
- It emphasises the creation of knowledge rather than the use of information
- It presents endless possibilities for creative problem solving
- It enhances the problem-solving techniques you already teach

(Source: Pat Phillips, NECC 2007, Atlanta)
“What are effective ways for teaching computational thinking?”
How to Teach Computational Thinking

- Increase your own CT knowledge
- Integrate CT concepts into everyday instruction
- Use CT terms for everyday tasks
 e.g. “Let’s create an algorithm for …”
- Encourage students to formulate and test their own hypotheses
 e.g. “Crime rates are on the rise …”
- Provide opportunities for students to transfer their learning to other situations
Successful CT Pedagogies

- Analogy / Storytelling
- CS Unplugged
 - Kinaesthetic
 - Role Playing
 - Puzzles
 - Art
 - Games
 - Magic
- Enquiry Based Learning (TEMI)

Programming Practice (Python / JavaScript)

See chapter 8
5 minute stretch break
Session 2 CT Examples
Learning Outcomes / Intentions

Outcomes:
- To develop an understanding of the centrality of Computational Thinking in CS.
- To understand and apply the concepts / pillars of Computational Thinking.

Intentions:
- To analyse and develop solutions to problems of various types using Abstraction, Decomposition, Pattern Recognition, Algorithm formation.
Computational Thinking – Rationale for Examples

• Different Pillars - 4 pillars 6 pillars 7 pillars
• Licence / Help for students – not a straight jacket

• Computer? ‘The Imitation Game’ / Blechley Park
• Why choose ‘logic’ problems: Monty Hall / Sisters and not Skiing Holidays

• PillarsConcepts
Examples
Chinese Babies

The basis of this problem in the One-Child policy introduced by the Chinese government in 1979. Many Chinese families wanted a boy. Let’s abstract a model of families where if a boy is born, they have no more children, and if a girl is born, they have another child and keep going until they have a boy. We ignore other biological, geographical or sociological factors.

If this model was run, would the population trend towards more boys, more girls or the same?
Chinese Babies

Try different ways to solve:

- English (nó Gaeilge) / Pseudocode / Algorithms... or any of pillars
- Diagram / Flowchart (ish)
- Model
- Code

Chinese babies Google doc
Group Activity
Chinese Babies
Farmer’s Problem

A farmer wants to cross a river and take with him a wolf, a goat, and a cabbage. There is a boat that can fit himself plus either the wolf, the goat, or the cabbage. If the wolf and the goat are alone on one shore, the wolf will eat the goat. If the goat and the cabbage are alone on the shore, the goat will eat the cabbage.

How can the farmer bring the wolf, the goat, and the cabbage across the river?
Group Activity
Farmer’s Solution

1. Begin on side A
2. Take goat across to side B
3. Return with empty boat to side A
4. Take wolf across river to side B
5. Return with goat to side A
6. Take cabbage to side B
7. Return with empty boat to side A
8. Take goat to side B
9. END
A closer look ...

<table>
<thead>
<tr>
<th>FARMER</th>
<th>WOLF</th>
<th>CABBAGE</th>
<th>GOAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Initial Position

<table>
<thead>
<tr>
<th>FARMER</th>
<th>WOLF</th>
<th>CABBAGE</th>
<th>GOAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Final Position

<table>
<thead>
<tr>
<th>FARMER</th>
<th>WOLF</th>
<th>CABBAGE</th>
<th>GOAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

All Positions
However ...

Goat cannot be left alone with the cabbage: $f=g=c \lor g<>c$

Goat cannot be left alone with the wolf: $f=g=c \lor g<>w$

<table>
<thead>
<tr>
<th>FARMER</th>
<th>WOLF</th>
<th>CABBAGE</th>
<th>GOAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

10 good and 6 bad
Farmer’s Problem – re-stated

A farmer wants to ferry an alpha and two betas across a river. However his boat is large enough to only take one of them at a time, making several trips across the river necessary. Also, an alpha cannot be left alone with a beta.

How can the farmer achieve the task?

Solution: Take the alpha across, then a beta returning with the alpha. Then take the second beta across followed by the alpha.
Rock Paper Scissors
Group Activity
Scenario 1

‘The Diving Bell and the Butterfly’ is an incredibly uplifting book. It’s the autobiography of Jean-Dominique Bauby, written after he woke up in a hospital bed totally paralysed. In the book, he describes life with locked-in syndrome. He did have a way to communicate not only to write the book but also with medics, friends and family. He did it without any technology at all. How?

https://www.youtube.com/watch?v=t4Ek4ZBpshs
Pair Activity
What CT concepts are you explaining?

What pedagogy are you using?

Presentation