

An Roinn Oideachais Department of Education

National Workshop 7

pdst.ie yf

Session 5

Session Schedule

Section 1	Introduction to Turing machines	
Section 2	Group activity on Turing machines	
Section 3	Artificial Intelligence	

By the end of this session participants will have

developed their understanding of **Turing machines** and understand their significance

participated in an activity to develop a deeper understanding of how Turing machines operate

participated in an activity on **artificial intelligence**

Section 1

Introduction to Turing machines

A fundamental question of Computer Science...

What is computable?

How do we define computability?

Turing Machines

Computability

Carnegie Mellos University

Machine Learning

Code breaking

Computer design

Artificial Intelligence

https://www.turing.org.uk

Introducing Turing machines

The illustration below is of an elevator represented as a finite-state machine

Circles represent states (in this case floors).

Arrows between circles represent transitions between states.

The labels on each transition represents the button press event.

What happens when we are on the ground floor and press the **UP** button? What happens when we are on the ground floor and press the **DOWN** button?

Introducing Turing machines

The illustration below is of an elevator represented as a finite-state machine

Assuming we start in state 1, what would the following input sequence yield?

UU DDDD UU D

The notion of a Turing machine is not too unlike this... Given a Finite State Machine and an input, we can determine an output

Introducing Turing machines

Introducing Turing Machines

The Turing Machine (TM) was invented in 1936 by Alan Turing.

It is a basic abstract symbol-manipulating device that can be used to simulate the logic of any computer that could possibly be constructed.

Although it was not actually constructed by Turing, its theory yielded many insights.

Anything that is possible to (mathematically) compute could be programmed on a Turing machine.

Turing Machines - Introduction

A Turing Machine consist of three components as follows:

- An infinitely long tape made up of individual cells. Each cell can contain a single character typically 1, 0, or B (blank)
- 2. A read/write head pointed at an individual cell
- 3. A controller (aka finite-state machine) which instructs the read/write head what to do

A schematic representation of a Turing Machine

Turing Machines - Operation

F

Initially the tape is inscribed with a sequence of characters – called the input

The operation of the Turing Machine is controlled by the finite-state machine (controller).

The operation takes place as a sequence of steps known as transitions.

The controller decides for a given (input character, state) pair, the (output character, state) pair - know as a transition.

Each transition involves:

- Reading
- Writing
- Moving
- Updating (state)

Turing Machines - Operation

Transitions can be expressed using:

state transition tables

OR

state transition diagrams

Current State	Read (input)	Write (output)	Direction to move r/w head	Next State
S1	1	0	Right	S1

(1, 0, R) (S1)

The above state transition table and diagram shows a single transition which says:

"When in state S1 <u>and</u> the symbol being read is a one, write a zero, move right and remain in state S1".

```
if (state == S1) and (character == 1):
write 0
move right
set state to S1
```

Turing Machines - Operation

The illustration below depicts a TM which defines a transition from state S1 to S2 when the current symbol being read in a zero.

After the transition has been completed, the symbol zero has been replaced with a 1, the read/write head has been moved right and the new state is set to S2.

The result of the computation (output) is the sequence of characters left on the tape if and when the Turing Machine halts.

Turing Machines – States

At any given time, a Turing Machine is said to be in a particular state. States are usually denoted by the letter S followed by a number e.g. S2 is taken to mean state two.

SO is conventionally used to denote the initial state. This is the state the Turing Machine is in before it starts to operate.

A double circle is used to denote the final or *halting state*. This is the state the Turing Machine is in when it finishes.

For example:

A fundamental question of Computer Science...

What is computable?

How do we define computability?

Answer: A task is computable if it can be carried out by a Turing Machine.

Section 2

Group activity: Turing machines

Test input: 111 (3)

Required output: 1111 (4)

Turing Machine Activity

Each group will trace through the operation of the Turing Machines assigned.

Initial State: SO

Test input: B111B

Initial State: SO

Test input: 111011

Initial State: SO

Test input: B011001B

Initial State: SO

Test input: B11001BB

Turing Machines – Activity Handout

Turing Machine Activity

Trace through the operation of the Turing Machines assigned.

Section 3

Artificial Intelligence

32

The Turing Test

The Turing test of artificial intelligence proposes a simple game where a hidden computer A and a person B converse with another person C. If C is unable to distinguish which he is conversing with, then the computer can be said to be able to "think". A Test

Lunch

An Roinn Oideachais Department of Education

© PDST 2023