

JavaScript Programming

A Manual for Teachers

of

Leaving Certificate Computer Science

Please cite as: PDST, Leaving Certificate Computer Science, JavaScript Manual for Teachers, Dublin, 2021

JavaScript Manual for LCCS Teachers 3

Table of Contents

Manual Overview 9

Conventions 10

Section 1 Core JavaScript

1 Introduction 11

Background 11

Client-side JavaScript vs. server-side JavaScript 13

JavaScript and Browser Wars 14

JavaScript history timeline 15

Our First Program - Hello World 16

2. Basic Syntax 18

Basic Syntax 18

Features of JavaScript 20

JavaScript Reserved Words 21

Flow of Control 22

3. Datatypes and Literals 24

Primitive Datatypes 24

string 24

number 26

Boolean 26

null and undefined 27

Object Datatypes 28

Built-in Objects 29

Global Properties 30

Global Constructors 31

Global Functions 33

JavaScript Manual for LCCS Teachers 4

4. Variables and Assignments 34

Declaring Variables (let vs. var) 36

Assignments 37

Constants (const) 40

Undefined Variables 41

Multiple Declarations 42

Undeclared Variables 43

User Input (prompt) 44

Programming Exercises 45

5. Arithmetic Operators and Expressions 47

Arithmetic Operators 47

Increment and Decrement Operators 48

Compound Assignment Operators 49

Type conversions 50

The Math Global Object 53

Random Numbers 54

Operator Precedence 55

Programming Exercises 57

6. Boolean Operators and Expressions 60

Comparison Operators 60

Exercises 62

Logical Operators 63

Exercises 71

7. Selection Statements 73

The if Statement 74

Exercises 77

if-else 78

Exercises 81

else if 83

JavaScript Manual for LCCS Teachers 5

Exercises 87

Nested if Statements 89

Example Program – Finding the maximum of 3 numbers 93

The Ternary Operator 96

The switch Statement 97

Programming Exercises 100

8. Iteration Statements 102

The while Loop 104

Exercises 109

The do-while Loop 111

Exercises 113

The for Loop 116

Examples (for vs. while loops) 118

Infinite Loops 120

Exercises 121

The break and continue Statements 123

Nested Loops 124

Programming Exercises 128

9. Strings 131

String Indexing 132

Primitive Strings vs. Strings as Objects 133

Comparing Strings 135

String Methods 137

Traversing Strings 140

Programming Exercises 143

10. Arrays 146

Example Program – sentence generator 149

Changing the elements if an array 150

Array Length 151

JavaScript Manual for LCCS Teachers 6

Array Methods 152

Array Processing (traversing arrays) 156

Copying Arrays 158

Passing Arrays into Functions 160

Programming Exercises 161

11. Functions 165

Introduction –definition and invocation 165

Parameters and Arguments 169

Return Values 174

Boolean Functions 178

Encapsulating code in Functions 179

Programming Exercises 181

12. Breakout Activity #1
(Computer Aided Learning, CAL)

185

Exercises (1-8) 188

Extended challenge 191

Suggested Solution to Breakout #1 (CAL) 193

Section 2 Client-side JavaScript

13. Client-side JavaScript 207

Introduction 207

Dynamic web pages – some examples 208

The Document Object Model (DOM) 210

The DOM Application Programming Interface (API) 214

DOM Examples 1 – 5 215

Events 221

Events - Examples 1 – 5 224

JavaScript Manual for LCCS Teachers 7

14. Breakout Activity #2 231

Introduction (number guessing game) 231

Task 1 231

Task 2 233

Task 3 236

Task 4 238

Task 5 (Online Computer Aided Learning System, OCALS) 241

Suggested Solution to Breakout #2 (tasks 1-4) 244

Suggested Solution to Breakout #2 (task 5, OCALS) Version 1 256

Suggested Solution to Breakout #2 (task 5, OCALS) Version 2 261

Appendices 268

JavaScript Keywords 268

Arithmetic Operators 269

Compound Assignment Operators 269

Operator Precedence 269

Comparison Operators 270

Logical Operators and Truth Tables 270

Common Array Methods 271

Common Date Methods 272

Common Math Methods 273

Common Number Methods 274

Common String Methods 276

References 277

JavaScript Manual for LCCS Teachers 8

BLANK PAGE

JavaScript Manual for LCCS Teachers 9

Manual Overview
The purpose of this manual is to provide a resource which can be used by Leaving

Certificate Computer Science (LCCS) teachers to develop their own knowledge and skills of

the JavaScript programming language. In doing so, we hope that teachers will gain the

confidence necessary to support LCCS students as they learn to independently design and

develop their own JavaScript programs.

Although the manual will serve as support material for teachers who attend the JavaScript

Workshop component of our two-year CPD programme, it is envisaged that its real value will

only become evident in the months and years after the workshops have taken place.

Beyond these workshops, the manual may be used as a basic reference for JavaScript

programming, but more importantly, as a teaching resource that might be used to facilitate

teachers in employing a constructivist pedagogic orientation towards the planning for

teaching and learning of JavaScript in the LCCS classroom.

The manual itself is divided into two main sections – core JavaScript and client-side

JavaScript.

Core JavaScript, as the name suggests, refers to the core aspects of the langage such as

variables, datatypes, statements, expressions, sequence, selection, iteration and functions.

These core constructs are covered in chapters 1-11. Chapter 12 contains a breakout activity

which provides an opportunity to further develop these core JavaScript skills.

The section on client-side JavaScript introduces the two main features of JavaScript that

make it the programming language of the web – namely document management and event

handling. This section concludes with a set of tasks in breakout activity 2 designed

specifically to re-inforce your client-side JavaScript programming skills.

Throughout the manual there are lots of examples and related exercises. Readers will find it

helpful if they read (and try) the examples before attempting the exercises. The source code

of most of the examples are available to download from the PDST GitHub repository

(https://github.com/pdst-lccs/lccs-javascript) and links to sample solutions for the two main

breakout activities are also available.

https://github.com/pdst-lccs/lccs-javascript

JavaScript Manual for LCCS Teachers 10

Conventions

To help with navigation through this manual, the following conventions are adopted:

 Bold text is used to highlight important new words and phrases being defined

 Italics are used for emphasis and also to highlight string literals

 Courier New font is used to denote JavaScript code such as keywords, commands

and variable names

The icons illustrated below are used to highlight different types of information throughout this

manual.

Space to make notes and answer questions using pen and paper.

Key point. A specific piece of information relating to some aspect of

programming

Experiment. An opportunity to change code to see what happens.

Programming exercises. An opportunity for individuals/pairs to practice their

JavaScript programming skills

Breakout Activities. Participants work in groups on various themed tasks

Reflection log. A space to reflect on your learning and log your thoughts.

Meet octocat! This is the GitHub integration symbol. Throughout this manual

you will notice this symbol appears along with the example code. When you

click on the octocat you will be directed to the source code on GitHub.

Readers are recommended to copy the code from GitHub to their preferred

Integrated Development Environment (IDE).

Key tips to pass on to novice programming students.

HTML Code JavaScript Code

JavaScript Manual for LCCS Teachers 11

1. Introduction

Background

JavaScript is considered to be the programming language of the web. Along with HTML and

CSS, it is one of three fundamental technologies that lies behind every web page and

website that you have ever visited.

HTML and CSS are responsible for the content and presentation of web pages respectively -

JavaScript controls their behaviour.

The above graphic depicts the three main types of files1 that make up every website. These

files reside on special computers called web servers. The main function of a web server is to

‘serve up’ (i.e. deliver/send) these files to clients (i.e. end-users) who request them typically

through their web browser. Google Chrome, Firefox, Microsoft Edge, Safari and Opera are

all examples of well-known browsers.

KEY POINT: Websites created with HTML and CSS are called static because

their content and presentation is always the same. JavaScript can be used to

add dynamic content and presentation to static websites.

1 A website contains lots of other resource files especially relating to media content (e.g. audio, video, graphics
etc.) but for the purpose of this discussion we are just interested in HTML, CSS and JavaScript files.

JavaScript Manual for LCCS Teachers 12

When a user visits a website – usually by entering the address (URL) of that site or by

clicking on a link on some other site – a request is made from the user’s browser to the site’s

server. The server responds by serving the requested file(s) back to the browser. At this

point it is useful to think of web browsers as, not just as portals through which web pages

can be accessed and displayed, but also as programs that interpret and run the HTML, CSS

and JavaScript code in which these pages are written.

KEY POINT: HTML, CSS and JavaScript are all run by web browsers.

HTML and CSS are both declarative languages. This means that they declare to a browser

what to do as opposed to how to do it. For example, the HTML <p> tag declares a

paragraph, the <h1> tag declares a Level 1 heading and so on. Similarly, CSS declares a

set of rules that determine the ‘look and feel’ of a web page. HTML and CSS are both living

languages – the specification of their syntax and grammar is constantly evolving under the

control of an international standards organisation called the World Wide Web Consortium or

W3C for short2.

JavaScript on the other hand is an imperative programming language. As such, it contains

features that can be used to change a program’s state and flow of control (e.g. variables,

selection statements and loops). JavaScript is based on a standard defined by an

organisation called the European Computer Manufacturer’s Association (ECMA)3.

The original purpose of JavaScript was to provide a means for web designers and

developers to control the behaviour of their web pages. By including JavaScript code in their

pages, designers and developers were enabled to implement logic that could respond in

different ways to different users depending on the context. For example, JavaScript code

could be used to detect and respond to invalid data being entered on a web page by a user.

In short, JavaScript enabled the development of websites with which users can interact.

2 The latest living standards for HTML and CSS can be found at https://www.w3.org/TR/html52/ and
https://www.w3.org/TR/css-2018/ respectively.
3 The latest version of JavaScript (ECMAScript 2020) can be found at https://tc39.github.io/ecma262/

https://www.w3.org/TR/html52/
https://www.w3.org/TR/css-2018/
https://tc39.github.io/ecma262/

JavaScript Manual for LCCS Teachers 13

Client-side JavaScript vs. server-side JavaScript

For many years JavaScript was a client-side scripting language. This was because

JavaScript programs could only be run from inside web browsers which were installed on

client machines. Because of the fact that JavaScript code can run on client devices it means

that a number of security restrictions had to be built into the language. The most notable of

these restrictions is that JavaScript cannot read/write files to/from the client machine’s disk.

Just think about it for a moment - a web developer writes a JavaScript program and includes

it as part of a web page. The website is deployed into production as a set of files on a web

server. At some stage, the page is requested by an end-user and the JavaScript code is run

by that user’s browser (which is running on the user’s client device). Unless there were

restrictions built-in to the language, there would be nothing to prevent web developers from

writing code that could for example delete the client’s entire file system! For this reason,

JavaScript has no built-in file i/o capabilities – it does not allow the reading or writing of files.

KEY POINT: Client-side JavaScript refers to JavaScript programs that are

designed to be run inside a web browser environment. It can be contrasted

with server-side JavaScript which refers to JavaScript programs that run

outside browser environments.

In recent years the JavaScript programming language has steadily evolved into a flexible

and powerful general purpose language that can be used both inside and outside of web

browsers. Implementations of the language that are designed to run programs outside a web

browser environment are referred to as server-side implementations. Some notable,

contemporary examples of server-side JavaScript are Node.js, Rhino, V8, and

SpiderMonkey. These can all be thought of as standalone environments designed to run

standalone JavaScript applications (in much the same way as any application written in any

other programming language is run).

Server-side implementations of JavaScript do not have the same restrictions as apply on the

client-side. As such they can include features to access the computer’s file system and

network resources directly (as well as many other features that are not supported by client-

side JavaScript).

In this section of manual we will focus on client-side JavaScript (also called core JS).

JavaScript Manual for LCCS Teachers 14

JavaScript and Browser Wars

In the very early days of the World Wide Web Netscape Navigator overtook Mosaic as the

most popular web browser. Netscape Navigator was owned by a company called Netscape.

In 1995 Netscape decided to enhance the capabilities of their browser by incorporating an

interpreter for a scripting language called LiveScript. LiveScript was written by Brendan Eich

and its main purpose was to allow web developers build interactive websites. LiveScript was

soon renamed as JavaScript as a marketing ‘ploy’ designed to ‘piggy back’ on the name of

the then new programming language called Java which was gaining rapid worldwide

popularity among the software development community.

Around the same time Microsoft released Internet Explorer v1.0 and soon after in an effort to

gain market share it developed its own scripting language called JScript (first released as

part of IE3 in 1996.) And so, what became known as the first ‘browser war’ began.

By 2002 IE owned 95% of the web browser market and in 2004 Netscape essentially handed

their browser code over to a new organisation called the Mozilla Foundation. The first

browser war had ended but with the release of Mozilla Firefox v1.0 in 2004 the second was

about to begin.

Rewind to 1997. Netscape submitted JavaScript to the European Computer Manufacturers’

Association (ECMA) for standardisation. The resulting standard was called ECMAScript (or

ES for short). ES5 was released in 2009, the same year Google entered the browser market

with Chrome. Chrome supported HTML5 and conformed greatly with ES5 – it became an

instant success.

Since 2009 browser popularity has greatly depended on the extent to which they conformed

to the latest ES standard. The rise of Chrome coupled with Firefox and other browsers such

as Opera and Safari eroded and eventually ended Microsoft’s dominance. Chrome overtook

IE as the market leader in 2012 and has remained so since. Since 2015 Microsoft’s browser

strategy has shifted away from IE towards its new browser, Microsoft Edge.

By 2017 Chrome had 60% of the market share and the second browser war was widely

accepted as having ended.

JavaScript Manual for LCCS Teachers 15

JavaScript history timeline

Some of the main milestones in the history of JavaScript are listed below. Prior to JavaScript,

the main purpose of a browser was to serve up and render/display static HTML pages.

- 1989 WWW invented by Sir Tim Berners-Lee

- 1995 Netscape release LiveScript

- 1995 LiveScript renamed to JavaScript

- 1996 Microsoft release JScript

- 1997 ES1 (ECMAScript v1.0)

- 1998 ES2

- 1999 ES3

- 2009 ES5

- 2015 ES2015 (ES6)

- 2016 ES2016 (ES7)

- 2017 ES2017 (ES8)

- 2018 ES2018 (ES9)

- ES Next – a dynamic term used to refer to the next release of ECMAScript

Since 1997 the European Computer Manufacturers’ Association (ECMA) have been defining

the standard for the JavaScript language. Each standard is essentially a (big) document that

describes the features of the language i.e. its syntax and semantics. Browser companies

take this standard and provide their own implementations. Implementations are known as

JavaScript engines. These engines run the JavaScript programs written by web developers.

JavaScript programmers need to be aware that their code it is not guaranteed to behave the

same way in all browsers. This is because different JavaScript implementations sometimes

interpret elements of the standard slightly differently - sometimes they ignore elements of the

standard and sometimes they include their own features that are not part of this standard.

The names and logos of some of most popular browsers in use today are depicted below:

JavaScript Manual for LCCS Teachers 16

Our First Program - Hello World

In the true tradition of learning any new programming language we will start our learning

journey with a JavaScript program to display the text, Hello World!.

The program is fairly straightforward.

 The first line is a comment. Comments are ignored by the JavaScript interpreter. They

are written by programmers to improve program readability. In JavaScript, comment lines

begin with //. Once it sees a double slash, JavaScript will ignore the rest of that line.

 The second line tells the JavaScript interpreter to display the text Hello World! on the

console. Like all programming languages, JavaScript is very fussy about syntax. We will

explain more about syntax rules as we go, but for the moment it is important to know that

when typing in code it must be done exactly as it appears in the listings – this includes

the case, dot, opening and closing brackets, quotation marks and the semi-colon at the

end of the JavaScript statement.

We now consider how to run our first program. To run any JavaScript program, we need to

include it on a web/HTML page. There are two main ways to include JavaScript in a HTML

document – either internally as part of the HTML or externally as a separate file. Both

techniques require the use of the HTML <script> element and are explained on the next

page.

KEY POINT: The script tag is HTML’s way of telling a browser that it

contains some JavaScript code. JavaScript code is traditionally executed in a

web browser.

JavaScript Manual for LCCS Teachers 17

The HTML code shown below includes JavaScript that is written inline i.e. it is part of the

HTML code and appears enclosed between opening and closing <script> tags.

The JavaScript code is contained within the HTML file

Externally written JavaScript code is contained in a separate file (which by convention is

named with .js extension) and is included in the HTML page using the src attribute of the

<script> tag as shown here.

hello.js

The JavaScript is loaded from an external file called hello.js

To run (and test) your JavaScript code all you have to do is load the HTML file into any

modern browser. When we load this page into the browser the message Hello World! Is

displayed on the browser’s console. To open the browser’s console, use the shortcut F12

(this works on most browsers) or on a Mac COMMAND-OPTION-I. You should see

something like this …

Congratulations - you have run your first JavaScript program!

https://github.com/pdst-lccs/lccs-javascript/blob/main/ch1_introduction/index.html
https://github.com/pdst-lccs/lccs-javascript/blob/main/ch1_introduction/index_external.html

JavaScript Manual for LCCS Teachers 18

2. Basic Syntax

Let’s take a closer look at our first JavaScript program.

Notes

 Line comments being with a double slash, //.

 console.log is used to display information in the browser’s console.

 The semi-colon is used to terminate JavaScript statements.

(Although not mandatory, the use of semi-colons at the end of every statement is

considered good practice.)

 JavaScript is case-sensitive. This means that JavaScript sees the code snippets shown

below all differently. Try them for yourself – each snippet contains a syntax error.

 JavaScript ignores whitespace during execution. This includes blank lines.

 If JavaScript comes across a word (or symbol) it doesn’t understand a syntax error will

usually be displayed (normally on the browser’s console)

 A program that contains a syntax error will not run properly. Therefore, if a programmer

(i.e. you!) sees a syntax error it should be fixed immediately.

https://github.com/pdst-lccs/lccs-javascript/blob/main/ch1_introduction/hello.js

JavaScript Manual for LCCS Teachers 19

Experiment!

Predict what the each of the following code snippets do.

Then record the actual output. Were your predictions correct?

JavaScript Manual for LCCS Teachers 20

Features of JavaScript

In this section we provide an overview of some of the main features of JavaScript.

The JavaScript language defines many features known as language constructs. Variables,

datatypes, operators and functions are the names of some of JavaScript’s more common

features. Constructs for selection (e.g. if, if-else and switch) and iteration (e.g. while,

do-while and for) are also important. JavaScript programs are written by using constructs

such as these in conjunction with the keywords shown on the next page.

Variables have datatypes and their values are based on the result of an expression.

Expressions are evaluated by the JavaScript engine at runtime. They can be simple literals

(i.e. hard-coded values such as numbers e.g. -3, 0, 2.71828, strings e.g. "Hi Mum!" or

any of the two Boolean values, true and false). Expressions can also be arithmetic or

Boolean.

Arithmetic expressions involve the use of the standard arithmetic operators such as addition

(+), subtraction (-), multiplication (*) and division (/) among some others. They are usually

carried out on numeric values or other arithmetic expressions, and usually result in a single

numeric value being returned.

Boolean expressions are formed by using the comparison operators e.g. is equal to (==),

strictly equal to (===), not equal to (!=), strictly not equal to (!==), greater than (>), greater

than or equal to (>=), less than (<=) and less than or equal to (<=). Boolean expressions

usually evaluate to either true or false. They can be combined into larger (more powerful

and complex) Boolean expressions by using the logical operators i.e. logical NOT (!), logical

AND (&&), and logical OR (||).

Datatypes themselves can be simple or compound. JavaScript’s simple datatype are

number, string, boolean, null and undefined. Compound datatypes are also known

as objects. Before the JavaScript engine starts to execute a program it creates a special

object called the Global object. The Global object contains a number of special properties

and functions that can be used by any JavaScript program. The most notable of these are

Infinity, NaN, undefined, isFinite(), isNaN(), parseInt(), parseFloat(),

String(), Number(), Math(), Boolean(), Array(), Date() and Object().

JavaScript Manual for LCCS Teachers 21

JavaScript reserved words

A reserved word is a word that has special meaning to JavaScript. Each word has an

associated syntax and semantics (meaning) which is described in the language

specification. When the JavaScript engine comes across a reserved word in a program, its

behaviour is governed by the rules set out in the specification.

Programmers should use reserved words for their intended purposes only. In particular, this

means that reserved words should never be used as names for variables or identifiers (i.e.

names of variables and functions) in any JavaScript program. A major part in the journey of

learning JavaScript (and any programming language) is becoming familiar with the meaning

of its reserved words. The syntax and semantics of many of JavaScript’s reserved words will

be explained and exemplified throughout this section of the manual.

The full list of JavaScript reserved words is shown in the table below.

await debugger false instanceof this void

break default finally let throw while

case delete for new true with

catch do function null try yield

class else if return typeof

const export import super undefined

continue extends in switch var

ECMAScript 2018 keywords

Notes:

 Although the words true, false, let, null and undefined are strictly speaking not

JavaScript reserved words, it is fair to treat them as if they were. Other words that fall

into this category but are not listed above include boolean, byte, char, double,

float, long, and short.

 It is also fair to think of global variables and functions such as those referred to on the

previous page as keywords, and as such these should never be used as identifiers

either.

JavaScript Manual for LCCS Teachers 22

Flow of Control

The flow of control refers to the sequence in which the lines of a program are executed.

Key in (or download) the following two programs (one at a time!) and compare their outputs.

The output is …..

and,

The output is …..

What did you notice about the output (in relation to the programs)?

KEY POINT: Lines of code are normally executed in the same order in which

they appear in a program. This is called sequential processing. We say that

the flow of control is sequential.

We will see later that the JavaScript language contains features (constructs) which allow

programmers to write code that executes in a non-sequential fashion. Two such features are

called selection and iteration.

 Selection is used by programmers when they want one of possibly several blocks of

code to be selected for execution. The most common selection constructs are if and

if-else statements.

 Iteration (or looping) is used by programmers when they want the same block of code to

be executed possibly multiple times. The most common looping constructs are for and

while statements.

https://github.com/pdst-lccs/lccs-javascript/blob/main/ch2_basicSyntax/flowOfControl1.js
https://github.com/pdst-lccs/lccs-javascript/blob/main/ch2_basicSyntax/flowOfControl2.js

JavaScript Manual for LCCS Teachers 23

A note on indentation

Indentation refers to the empty space(s) at the beginning of a line of code (called leading

space(s)).

One key difference in syntax between JavaScript and Python is that unlike Python,

JavaScript is not fussy about indentation. The listings below are all syntactically correct and

semantically equivalent (i.e. they have the same meaning to the JavaScript interpreter).

JavaScript is not fussy about indentation. These three listings are all correct.

For the sake of clarity, we recommend using the same level of indentation for blocks of code

that are logically related. By default, your JavaScript code should not be indented unless the

indentation improves its readability.

It is good practice not to use leading spaces unless you have to

Lines of code that belong together in a program are referred to as code blocks.

JavaScript uses curly braces to delimit blocks of code. The opening curly brace (i.e. {)

marks the start of a code block and the closing curly brace (i.e. }) marks the end of a code

block.

KEY POINT: JavaScript’s syntax requires that every opening curly brace must

have a corresponding closing curly brace.

https://github.com/pdst-lccs/lccs-javascript/blob/main/ch2_basicSyntax/indentation.js

JavaScript Manual for LCCS Teachers 24

3. Datatypes and Literals

It is important for programmers to be aware of the different types of data their programs

need to deal with. For this it is necessary to understand the underlying types supported by a

language. JavaScript supports both primitive (simple) and object (compound) types. Let’s

start by looking at JavaScript’s primitive types.

Primitive Datatypes

The five common JavaScript primitive types are illustrated in the graphic below:

JavaScript primitive types

A literal is any value that can appear directly in a program. Sometimes, literals are referred

to as hard-coded values. Literals, just like all values, have an underlying datatype. It makes

sense therefore to talk about numeric literals or string literals.

Let’s take a look at some examples involving JavaScript primitive datatypes and associated

literals.

string

The string datatype is used to represent string literals. A string literal is any sequence of

characters enclosed in quotation marks – either single or double. String literals can contain

normal alphabetic characters, numeric characters and basically any Unicode symbol. See

https://unicode-table.com/en/#combining-diacritical-marks for a complete list of symbols that

can be used in string.

The following code demonstrates the use of string literals:

https://unicode-table.com/en/#combining-diacritical-marks

JavaScript Manual for LCCS Teachers 25

The code causes the following output to be displayed on the console:

JavaScript accepts the vast majority of literal

characters in a string literal. However, in order to

understand a small number of special characters

(e.g. tab, single quote, backslash) JavaScript

requires the use of an escape sequence. The

escape sequence identifies the special character to

JavaScript. We say the character is escaped.

The backslash character introduces an escape

sequence in a string.

Escape

Sequence
Meaning

\n Newline

\t Tab

\’ Single Quote

\” Double Quote

\\ Backslash

\uXXXX Unicode character

 Common escape sequence characters

KEY POINT: An escape sequence is used to identify certain special

characters (usually white-space or non-printable characters) that cannot be

represented literally as part of a string.

Experiment!
Predict the output of each of the code snippets shown below.
Then record the actual output. Were your predictions correct?

https://github.com/pdst-lccs/lccs-javascript/blob/main/ch3_datatypes/string1.js
https://github.com/pdst-lccs/lccs-javascript/blob/main/ch3_datatypes/string2.js

JavaScript Manual for LCCS Teachers 26

number

The number datatype is used to represent both integers and decimals (i.e. floating point

numbers).

The unary operators + and – can be used to denote the sign of any numeric literal (i.e.

positive or negative). Numeric literals cannot contain commas or spaces. Examples of base

10 integer literals are −20, 0, 12345 and 7.

Integers literals in number systems other than base 10 can be specified by using special

leading characters (i.e. characters placed before the number). For example,

- Hexadecimal integers are prefixed by 0x (or 0X) e.g. 0xFF is decimal 255

- Base 2 or binary integers are prefixed by 0b or 0B e.g. 0b11111111 is decimal 255

- Although not part of the official language specification many implementations support

octal integers by using 0 as the prefix e.g. 0777 is decimal 255

A floating point literal must be made up of at least one digit and either a decimal point or E

(or e). For example, 10E6 (i.e. 1,000,000), 3.14E-2 (i.e. 0.0314), -0.000123 and

.000123 are all valid floating point literals.

Two special properties relating to number are defined by JavaScript: Infinity and NaN.

These will both be discussed shortly.

boolean

The two JavaScript boolean literals are true and false – these should both treated as

reserved words.

JavaScript also supports a notion called ‘truthy’ and ‘falsey’ – these refer to any expression

that evaluates to the literals, true and false respectively. The following values all evaluate

to false (as well as false itself):

 The number zero (0)

 An empty string (“”)

 null

 undefined

 NaN

JavaScript Manual for LCCS Teachers 27

null and undefined

These are two different types that share the same (empty) value. They are both ‘falsey’

values, but also have subtle differences that are best described by their uses:

- null is used to indicate the (intentional) absence of a value

- undefined is used to indicate the lack of definition of a value respectively. If a variable

has a value of undefined it usually means that the variable has been declared but has

no value.

In JavaScript two values are said to be equal if they share the same value. However, they

are strictly equal to each other if and only if they both have the same value and type.

Therefore, while null and undefined are equal (because they are the same value) they

are not strictly equal (because they are different types). This is a perfect example of the

idiosyncratic nature of JavaScript!

KEY POINT: JavaScript is a dynamically typed language which means that during

their lifetime, variables can be used to store values of different underlying

datatypes. You can use the typeof operator to inspect a variables type at any

stage in a JavaScript program..

JavaScript Manual for LCCS Teachers 28

Object Types (compound types)

Object-oriented programming (OOP) is a programming paradigm that involves the creation

and use of objects. Objects are a type of data that are used by programmers to represent

real-world things (e.g. bank account, student, bicycle). Because objects can consist of

multiple values they are referred to as a compound datatype. This can be contrasted with the

simple or primitive types we have just discussed.

JavaScript is an example of an object-oriented language which means that it has features to

support object data structures. Object data structures can be thought of as a programmatic

representation of a person, place or thing. In this sense OOP provides a means by which

these ‘things’ can be modelled in a program. These objects can be described by their

properties (using variables) and behaviour using functions (more commonly referred to as

methods in the world of OOP).

Using JavaScript to create objects is beyond the scope of this manual (and LCCS) but it is

important to understand what they are and how they can be used. Suffice to say for the

moment that if we have an object o that has a property p and a method m then the dot (aka

member) operator can be used to access the property and invoke the method. The syntax

for this is o.p and o.m() respectively.

The illustration below4 depicts how a real-world thing such as a bicycle could be represented

(or modelled) as an object in a program.

A software object A bicycle modelled as a software object

Objects have state (i.e. properties) and behaviour – state is represented as variables and

behaviour is represented as methods. If an OO programmer chooses to model a bicycle as

4 Source: https://docs.oracle.com/javase/tutorial/

https://docs.oracle.com/javase/tutorial/

JavaScript Manual for LCCS Teachers 29

an object they can store state such as speed, cadence and gear in the object’s variables;

and they can describe the bicycles behaviour using methods such as accelerate, break,

change gear etc. (An online store for a bicycle shop might use an application that creates

multiple runtime instances of these objects – one for each individual bicycle.)

Built-in objects

JavaScript comes with built-in support for three types of objects – browser objects,

document objects and global objects. Because these objects are models they can be

referred to and the Browser Object Model, the Document Object Model and the Global

Object Model (or BOM, DOM and GOM for short!).

The Browser Object Model consists of a set of properties and methods that relate to the

browser that your JavaScript program runs within. The two methods – alert and prompt –

which we will be using extensively throughout this manual belong to the browser’s object

model. In fact, console.log which we have been using in the examples to display

information on the browser’s console belongs to the BOM.

The Document Object Model is feature of JavaScript that makes dynamic and interactive

web pages/websites possible. The DOM is a runtime representation of a HTML document or

web page. It provides a programmatic view of the HTML code behind every page. We can

use the DOM to change the content and behaviour of a web page ‘on the fly’. This means

that we can alter, add or delete anything relating to the content/appearance of a page from

within a running JavaScript program. And all this is made possible by the DOM. We will

return to the DOM at a later stage in the manual.

The Global Object Model is important to be aware of, even to the novice JavaScript

programmer. This is because it contains a number of useful properties and functions that we

can make use of in even the simplest of our JavaScript programs. These properties and

methods can be categorised under the following sub-headings under the Global Object

Model

- global properties

- global constructor functions

- build-in objects and

- global functions

KEY POINT: When the JavaScript engine first starts it

creates a single instance of its global object. The

properties and functions of this object can be

accessed from anywhere in a JavaScript program via

a special object variable called this.

JavaScript Manual for LCCS Teachers 30

Some of the more commonly used elements of JavaScript’s Global Object are depicted in

the tree diagram below. This is followed by a brief outline of some of these properties and

functions.

JavaScript global objects

Global Properties

Infinity

Internally JavaScript represents numbers (i.e. integers and decimal) as 64-bit floating point

values. Integer values from −253 up to 253 can be represented accurately. For decimal

numbers the range is ±1.797693134862315𝐸308

The value Infinity is used to denote numeric values that exceed this stated maximum

and -Infinity is used to denote numeric values that are smaller than the possible

minimum. Interestingly enough, division by zero returns Infinity.

NaN

NaN stands for Not-A-Number. The value NaN denotes a non-numeric value. It is used in

JavaScript to indicate that a value cannot be represented as a number (typically in situations

where the value is required to be a number). For example, if you try to multiply an integer by

some string literal the result will be NaN.

JavaScript Manual for LCCS Teachers 31

Global Constructors

These are special functions which, when called, create objects.

Global constructors are often used to represent primitive types as objects – a process called

object wrapping. For example,

- String() is a constructor function that can be used to represent values of type string

- Number() is a constructor function that can be used to represent values of type number

- Boolean() is a constructor function that can be used to represent values of type

boolean

Array() is the name of another constructor function. Both arrays and strings are discussed

in detail elsewhere in this manual.

The following line of code demonstrates how the numeric literal 19.64738 can be wrapped

using Number()

Number(19.64738)

By wrapping this primitive value using the global constructor for Number, our code can now

avail of functions such as toFixed and toPrecision which are built-in as part of the

definition of the Number object.

This is illustrated in the following line of code which displays 19.64738 using 4 significant

digits i.e. 19.65.

console.log(Number(19.64738).toPrecision(4));

The code looks more complicated than it actually is – at runtime it gets executed in three

steps as follows:

1. Number(19.64738)

The global constructor for Number is called. This call results in the creation of a Number

object for the primitive value 19.64738.

2. The function toPrecision is called on the Number object just created. The purpose of

this call in the code shown here is to generate a string representation of the number

using four significant digits.

3. The result i.e. 19.65 is displayed using console.log

JavaScript Manual for LCCS Teachers 32

The names and a brief descript of some other Number functions (methods) are shown in the

table below.

Method name Description

x.toExponential()
Returns a string representation of x in exponential notation

19.64738.toExponential() 1.964738e+1

x.toFixed(len)

Returns a string representation of x with len digits after the

decimal point

19.64738.toFixed() 20

19.64738.toFixed(1) 19.6

19.64738.toFixed(2) 19.65

19.64738.toFixed(3) 19.647

x.toPrecision(len)

Returns a string representation of x rounded to len significant

digits

19.64738.toPrecision(0) 19.64738

19.64738.toPrecision(2) 20

19.64738.toPrecision(4) 19.65

19.64738.toPrecision(6) 19.6474

One common use for Number() is to convert values from different datatypes to numbers

that can be worked with using the above functions. This is illustrated in the examples shown

below

Number("123"); // convert the string literal to 123

Number("1.23"); // 1.23

Number(true); // returns 1

Number(false); // returns 0

If the value passed into Number cannot be converted to a type of number then the result will

be NaN.

Number("Joe"); // NaN

https://github.com/pdst-lccs/lccs-javascript/blob/main/ch3_datatypes/Number.js

JavaScript Manual for LCCS Teachers 33

Global Functions

isNaN and isFinite

Example uses of isNaN and isFinite are shown side by side in the table below.

 isNaN("fifty"); // true

 isNaN("10"); // false

 isNaN(99); // false

 isNaN(NaN); // true

 isFinite("fifty"); // false

 isFinite("10"); // true

 isFinite(99); // true

 isFinite(NaN); // false

isNaN IsFinite

The difference between isNaN and isFinite is subtle. isNaN returns true if the value

passed in is not of type number or NaN. Otherwise it returns false. isFinite returns

true if its argument is a finite number. Otherwise it returns false.

parseInt and parseFloat

These two global functions are typically used to convert strings to base-10 integers and

floating-point numbers respectively.

Example uses of both functions are shown side by side in the table below.

 parseInt("111"); // 111

 parseInt("111two"); // 111

 parseInt("111",2); // 7

 parseInt("4.7",10); // 4

 parseInt("4.7"); // 4

 parseInt("Joe"); // NaN

 parseInt(true); // NaN

 parseFloat(0.0123E+2) // 1.23

 parseFloat(123E-2) // 1.23

 parseFloat("50.5") // 50.5

 parseFloat("50point5") // 50

 parseFloat(".5") // 0.5

 parseFloat(fifty5) // NaN

 parseFloat(false) // NaN

parseInt parseFloat

Note that the base (radix) of the value to parse can be specified as an optional second

argument to parseInt. Hence, parseInt("111",2); takes "111" as a base-2 number

and yields a result of 7 which is the base-10 equivalent.

https://github.com/pdst-lccs/lccs-javascript/blob/main/ch3_datatypes/Number.js
https://github.com/pdst-lccs/lccs-javascript/blob/main/ch3_datatypes/isFinite.js
https://github.com/pdst-lccs/lccs-javascript/blob/main/ch3_datatypes/parseInt.js
https://github.com/pdst-lccs/lccs-javascript/blob/main/ch3_datatypes/parseFloat.js

JavaScript Manual for LCCS Teachers 34

4. Variables and Assignments
A variable is a placeholder for data.

During execution, a program’s data is held in temporary memory locations that are

referenced by variable names. Variable names can be thought of as memory locations.

Variables are created by programmers so that their programs can temporarily store data

which can then be used at another point in a program. The scope of a variable refers to the

parts of a program where a variable can be legitimately used. The scope of a variable can be

local or global depending on how and where it is declared within the program.

KEY POINT: A variable is a programming construct used to store (remember) data.

Reflection
Identify some data/variables that might be needed by the systems listed below

System Suggested variable names

(to store data used in the system)

ATM System
PIN, option, account number,

balance, amount requested, date/time

A School Library System

Netflix

Snapchat

Spotify

Your favourite console game

JavaScript Manual for LCCS Teachers 35

Guidelines and Rules for Naming Variables

As a general guideline, programmers should choose names for variable that are simple and

meaningful. A meaningful name is one that tells something about what the variable is used

for. The use of meaningful variable names makes programs more readable and

understandable to fellow programmers.

When choosing a name for a variable it can be helpful to think of a noun that describes the

purpose of the variable.

Since JavaScript programs are written using the Unicode character set it follows that any

character can be used in a variable name. The following exceptions apply:

 The first character in a variable name must be a letter, an underscore (_), or a dollar sign

($). Letters and digits can follow.

 Spaces, dashes and dots cannot be used as part of a variable name.

 A variable name cannot be the same as any of the JavaScript keywords or reserved

words (e.g. if, else, function etc.)

In JavaScript it is considered standard practice to separate interior words in multi-word

variable names using camel case e.g. firstName, highScore, and payRate. The use of

an underscore to separate individual words written in lower case is also considered

acceptable e.g. first_name, high_score and pay_rate.

The following are examples of valid (legal) variable names: guess, _randomNum,

$userName, x_pos, höhe, and x1.

The following are examples of invalid (illegal) variable names: 1x, function, pay-

rate, and student.name

If the JavaScript engine comes across a name it does not understand it will display a syntax

error on the console.

JavaScript Manual for LCCS Teachers 36

Declaring Variables

To declare a variable means to introduce a variable to a program for the first time i.e. to let

JavaScript know here is a new storage location for data.

The let keyword is used to declare a variable in JavaScript.

The code snippet shown below illustrates the use of let to declare three variables –

firstNumber, secondNumber and sum.

let firstNumber = 1;

let secondNumber = 2;

let sum = firstNumber + secondNumber;

console.log("%d + %d = %d", firstNumber, secondNumber, sum);

When this program is run the console output will look something like this:

Variables can also be declared using the var keyword but as we will soon see we will not be

recommending the use of var. The snippet below demonstrates how to declare variables

using var. The output displayed is identical to that of the previous snippet.

var firstNumber = 1;

var secondNumber = 2;

var sum = firstNumber + secondNumber;

console.log("%d + %d = %d", firstNumber, secondNumber, sum);

So, let and var are JavaScript keywords used to declare variables. Another closely related

keyword which we will explain soon is const.

When a variable is declared for the first time it is recommended to assign it some initial

value. This is done using an assignment statement.

https://github.com/pdst-lccs/lccs-javascript/blob/main/ch4_vars_assignments/letDeclare.js
https://github.com/pdst-lccs/lccs-javascript/blob/main/ch4_vars_assignments/varDeclare.js

JavaScript Manual for LCCS Teachers 37

Assignments

The process of setting the value of a variable is called assignment. We say a variable is

assigned a value or, a value is assigned to a variable

The general form of an assignment statement is

<variable-name> = <expression>;

The name of the variable appears on the left hand side and an expression appears on the

right hand side. The ‘=’ symbol in the middle is the JavaScript assignment operator.

KEY POINT: Although the symbols used to denote the JavaScript assignment

operator and a mathematical equation are identical, they should not be confused as

they have completely different meanings.

The use of ‘=’ indicates an assignment statement. When the JavaScript engine comes

across an assignment statement it evaluates the expression on the right hand side

first. The result of this evaluation is then stored in the variable named on the left hand side.

The right-hand-side expression can be any combination of:

- a literal value such as a string (e.g. “Welcome”) or a number (e.g. 7, 3.14)

- other variable(s)

- a call to a function which itself returns a values

- any combination of literal values, variables, and/or functions (i.e. any valid JavaScript

expression)

JavaScript Manual for LCCS Teachers 38

The use of let vs. var

There are some subtle differences between the let and var – two of these differences can

be explained in terms of scope and hoisting.

Scope

When a variable is declared using the var keyword its scope will be global or local

depending on whether it was declared outside or inside a function. Variables declared inside

a function using var are only visible within that function; otherwise they are visible to the

entire script in which they are declared.

The scope of a variable declared using the let keyword is narrower. This is because its

scope is confined to the block of code within which it is declared. (Recall that curly braces

are used to mark the start and end of JavaScript code blocks.) This gives programmers

much more control over the sections of code which can use their ‘let’ variables. For

example, is possible to declare a ‘let‘ variable with a scope that does not extend outside a

while loop or the body of an if statement.

Hoisting

Before a script is executed, the browser (as part of the page load process), scans the entire

code for variables declared using the var keyword. As it does so it builds up a list of ‘var’

variables. Each time the browser comes across a new ‘var’ variable it adds it to this list.

Because of this pre-processing step, the JavaScript engine knows the names of all ‘var’

variables in advance of running a program. It treats ‘var’ variables as though they are

declared at the top of the program. The net effect of this phenomena which is called

hoisting is that ‘var’ variables can appear (anywhere) in a script before they are declared.

KEY POINT: Declaring a variable using the var keyword anywhere in the code is

equivalent to declaring it at the top. This is called hoisting.

The following two code snippets are executed in the same way by the JavaScript engine.

month = 1;

var month;

console.log("The month is", month);

 var month;

month = 1;

console.log("The month is", month);

These two snippets are equivalent.
The use of var means month is hoisted before the code runs.

https://github.com/pdst-lccs/lccs-javascript/blob/main/ch4_vars_assignments/varHoisting1.js

JavaScript Manual for LCCS Teachers 39

Variables declared using the let keyword are not hoisted by JavaScript. Such variables

must be declared before they are used (which is a very wise step in any case!).

For example, the following code would result in an error because and attempt is made to

assign 1 to month before it is declared.

// The use of let is good practice because it forces programmers to ...

// ... declare variables before they are used.

// This code generates a syntax error.

month = 1;

let month;

console.log("The month is", month); // Error

Further Reading

See https://www.geeksforgeeks.org/difference-between-var-and-let-in-javascript/ for more

information on the difference between let and var.

An explanation of why the name "let" was chosen can be found here.

https://stackoverflow.com/questions/37916940/why-was-the-name-let-chosen-for-block-

scoped-variable-declarations-in-javascri

KEY POINT: A variable is said to be declared when it has been made known to the

program. The recommended way to declare a variable is to use the let keyword.

https://www.geeksforgeeks.org/difference-between-var-and-let-in-javascript/
https://stackoverflow.com/questions/37916940/why-was-the-name-let-chosen-for-block-scoped-variable-declarations-in-javascri
https://stackoverflow.com/questions/37916940/why-was-the-name-let-chosen-for-block-scoped-variable-declarations-in-javascri
https://github.com/pdst-lccs/lccs-javascript/blob/main/ch4_vars_assignments/varHoisting2.js

JavaScript Manual for LCCS Teachers 40

Constants

The syntax for declaring a constant is similar to that for declaring a variable. The const

keyword is used as opposed to let (or var).

For example, the line below declares a constant called PI and initialises it to 3.14.

const PI = 3.14;

console.log("PI:", PI); //3.14

Many programmers conventionally denote constants using upper case letters (with individual

words being separated by underscore if the constant contains more than a single word.)

Constants must be initialised as part of their declaration. (We will soon see that this is not

the case for variables.) Thus, the following code would generate an error.

const PI; // SyntaxError: Missing initializer in const declaration

As you might expect the value of a constant cannot be changed once it has been

declared. This is illustrated in the line below which attempts to change the value of the

previously declared constant, PI.

PI = 3.14159; // TypeError: Assignment to constant variable.

Other points worth noting about constants are:

- The scope rules for constants are the same as those for ‘let’ variables. Therefore,

const identifiers do not hoist to the top of the block (unlike var identifiers).

- The name of a constant cannot be the same as the name of a variable that has already

been defined within the same scope.

Therefore, the code shown below would generate an error saying: Identifier

'corkToDublin' has already been declared

let corkToDublin;

const corkToDublin = 258.5; // SyntaxError: …

console.log("Distance:", corkToDublin);

https://github.com/pdst-lccs/lccs-javascript/blob/main/ch4_vars_assignments/const1.js
https://github.com/pdst-lccs/lccs-javascript/blob/main/ch4_vars_assignments/const2.js

JavaScript Manual for LCCS Teachers 41

Undefined variables

An undefined variable is one that has been declared but not initialised. One of the many

subtle differences between JavaScript and Python is that variables in JavaScript can be

declared without initialisation. (Python requires that variables are initialised as part of their

declaration.)

The code snippet shown below declares a variable called area without any initialisation.

(The identifier could have been created in the same way using var instead of let)

let area;

console.log("The area is", area); // The area is undefined

When this happens JavaScript automatically assigns an initial value of undefined to the

variable in question. (undefined is actually a JavaScript global variable.)

KEY POINT: An undefined variable is one that has been declared but not (yet)

assigned a value.

Undefined variables can be a source of problems and are therefore considered bad practice.

For example, if you try to add a number to an undefined value – as illustrated in the code

snippet below - the result will be NaN. NaN stands for Not a Number. As already mentioned it

is one of JavaScript’s predefined global variables.

let count;

count = count+1;

console.log("Count:", count); // Count: NaN

For this reason, among others, it is generally considered to be poor programming practice

not to initialise a variable as part of its deceleration.

https://github.com/pdst-lccs/lccs-javascript/blob/main/ch4_vars_assignments/undefined2.js
https://github.com/pdst-lccs/lccs-javascript/blob/main/ch4_vars_assignments/undefined1.js

JavaScript Manual for LCCS Teachers 42

Multiple declarations

Undefined variables can be considered acceptable if they are initialised together using a

technique that is sometimes called assignment chaining. Assignments can be ‘chained’

together in order to assign a single value to several variables.

let x, y, z; // declare 3 (undefined) variables

x = y = z = 0;

console.log("x:", x, "y:", y, "z:", z); // x: 0 y: 0 z: 0

This program generates the output shown below:

The following code demonstrates how to declare and initialise several variables in a single

statement. Note that the values of h and l are both undefined after the lines are executed.

You should note that this is considered poor practice.

let length=10, breadth=15;

let l, b=20;

console.log("length:", length, "breadth:", breadth);

console.log("l:", l, "b:", b);

When this program is run the following output is displayed:

It is also possible to declare a variable more than once using var. For example, the code

snippet below (another fine example of bad practice!) is legal. However, this is not possible

with let – another good reason to use let instead of var!

var distance;

console.log("Distance:", distance); // Distance: undefined

var distance=10;

console.log("Distance:", distance); // Distance: 10

https://github.com/pdst-lccs/lccs-javascript/blob/main/ch4_vars_assignments/multipleDecl1.js
https://github.com/pdst-lccs/lccs-javascript/blob/main/ch4_vars_assignments/multipleDecl2.js
https://github.com/pdst-lccs/lccs-javascript/blob/main/ch4_vars_assignments/multipleDecl3.js

JavaScript Manual for LCCS Teachers 43

When the previous program is run it generates the following output:

KEY POINT: The use of let safeguards against multiple declarations of the same

variable in the same block of code.

When initialising multiple variables in a single statement care must be taken to ensure that

the required values are defined in advance. For example, the statement, let x=0, y=x; is

legal because x gets its value before y is initialised. The line, let x, y=x; is also legal but

it results in two undefined variables - x and y. However, the line let x=y=0; results in an

error because y is undeclared.

The code below makes the point that care must be taken not to inadvertently overwrite any

variables during initialisation. (The initial value of y is overwritten by the value in z!)

let y = 0;

let z = 1;

let x = y = z;

console.log("x:", x, "y:", y, "z:", z); // x: 1 y: 1 z: 1

Undeclared variables

An undeclared variable is a variable that is defined with a value without using any of the

three keywords - let, var, or const.

For example, the following code defines and displays the contents of an undeclared variable

called n.

n = 7;

console.log("The value of n is", n);

While the above code is legal it is not recommended.

The JavaScript engine generates a warning when it comes across undeclared variables in a

program. This is because as they can lead to unexpected program behaviour.

https://github.com/pdst-lccs/lccs-javascript/blob/main/ch4_vars_assignments/multipleDecl4.js
https://github.com/pdst-lccs/lccs-javascript/blob/main/ch4_vars_assignments/undeclared1.js

JavaScript Manual for LCCS Teachers 44

User Input

The simplest way to capture data from the end-user into a JavaScript program is to use the

prompt command. prompt is a browser API which, when called, displays a pop window

with an entry field that can be used to enter data. An example of such use is shown here:

let favColour = prompt("Enter your favourite colour");

The above line would cause the screen shown here to popup in the user’s browser. The

string Enter your favourite colour is displayed as a prompt to the end user on the popup.

If the user clicks the OK button the value entered by the user is returned as a string and

assigned to the variable favColour. Prompt returns null if the user clicks the Cancel

button (even if there is some text in the entry field).

prompt returns whatever value is entered as a string. This means that if you want to capture

numeric data you will need to convert it in your program. One common way to do this is to

wrap the call to prompt inside the Number object as shown here.

let age = Number(prompt("Tell me your age"));

In this case whatever value the user enters is converted to a number and stored in the

variable age. This means that age can be used in arithmetic operations such as subtraction

as shown below.

let age = prompt("Enter your age and I will tell you the year you were born");

let currentYear = new Date().getFullYear(); // Get the current year, yyyy

console.log("You were born in", currentYear - age);

The use of prompt is intrusive for the end user - later we will examine how to capture data

from a form on web page using DOM and event handling but for the moment we will use

prompt.

https://github.com/pdst-lccs/lccs-javascript/blob/main/ch4_vars_assignments/userInput1.js

JavaScript Manual for LCCS Teachers 45

Programming Exercises – Variables

1. Write a line of code to do each of the following:

a) declare an integer variable called result, initialised to zero

b) assign the value 50 to result

c) display the value of result

d) assign the value 80 to result

e) display the value of result

2. Write a line of code to do each of the following:

a) declare a variable called firstName, initialised to your own first name.

b) declare a variable called lastName, initialised to your own surname

c) display the contents of the variables on the output console.

3. Read carefully the following block of code and answer the questions which follow:

let a=10;

let b=5;

let temp=a;

a=b;

b=temp;

a) How many variables are there? (What are their names?)

b) What are their initial values?

c) What are the values of a, b and temp at the end of the program?

d) Explain – in one sentence - what the program does?

e) What is the purpose of the variable temp?

4. List some variables that might be used in the following systems.

a) ATM System

b) Airline Reservation System

c) College Application System

d) Amazon/Facebook

e) Calculator Application

JavaScript Manual for LCCS Teachers 46

5. Describe what do you think the following program does?

let colour = prompt ("Please enter your favourite colour");

console.log("Your favourite colour is", colour);

6. Key in the following code and run it. What does it do?

let firstName = prompt("What is your name?");

let colour = prompt("What is your favourite colour?");

console.log("Hi", firstName, "Your favourite colour is", colour);

7. Modify the code in the previous question so that it asks the user for their surname as

well as their first name.

8. Complete the following:

a) Write a line of code that asks a user how many brothers they have. Store the value

entered in a variable called brothers.

b) Now write a line of code that asks a user how many sisters they have. Store the value

entered in a variable called sisters

c) Finally, write a line that uses the values entered in parts a) and b) to output a message

like, You have 2 brothers and 3 sisters

JavaScript Manual for LCCS Teachers 47

5. Arithmetic Operators and Expressions
In this section we will examine the valid operations for different primitive datatypes.

Arithmetic Operations

JavaScript supports the basic binary arithmetic

operations of addition (+), subtraction (-),

multiplication (*), division (/), remainder (%, aka,

modulus), and exponentiation (**, aka power).

All operators work with two operands which can

be numeric literals or variables and evaluate to a

single numeric value.

Key in (or download) the following code and record its output.

JavaScript Code Use the space below to

record the output

let x = 2, y = 3, z=6;

console.log("Sum:", x, "+", y, "=", x+y);

console.log("Difference:", z, "-", y, "=", z-y);

console.log("Product:", y, "*", z, "=", y*z);

console.log("Quotient 1:", y, "/", z, "=", y/z);

console.log("Quotient 2:", z, "/", x, "=", z/x);

console.log("Remainder 1:", z, "%", x, "=", z%x);

console.log("Remainder 2:", x, "%", z, "=", x%z);

console.log("Divide into zero:", 0, "/", x, "=", 0/x);

console.log("Divide by zero:", x, "/", 0, "=", x/0);

console.log("Zero into zero:", 0, "/", 0, "=", 0/0);

console.log("Remainder and zero 1:", 0, "%", x, "=", 0%x);

console.log("Remainder and zero 2:", x, "%", 0, "=", x%0);

console.log("Remainder and zero 3:", 0, "%", 0, "=", 0%0);

console.log("Power 1:", x, "**", y, "=", x**y);

console.log("Power 2:", x, "**", -y, "=", x**-y);

https://github.com/pdst-lccs/lccs-javascript/blob/main/ch5_arithmeticExpressions/allOperators.js

JavaScript Manual for LCCS Teachers 48

Increment and Decrement Operators

JavaScript supports increment and decrement operators - these are + + and − −

respectively. Both operators are unary meaning that they require just one operand. Unary

increment adds one to its operand and unary decrement subtracts one. In both cases the

operand must be a variable (i.e. it cannot be a literal value). This is because the resultant

value is stored in the variable.

The program below demonstrates the use of the unary increment operator:

// Unary arithmetic - increment and decrement

let x = 7;

let y = x;

console.log("x before post-increment", x); // 7

console.log("Post-increment:", x++); // 7

console.log("x after post-increment", x); //8

console.log("y before pre-increment", y); // 7

console.log("Pre-increment:", ++y); // 8

console.log("y after pre-increment", y); // 8

JavaScript Code Output

KEY POINT: If the operator is used before the variable (e.g. ++a) the new value is

returned after the operation. This is called prefix notation.

If the operator is used after the variable (e.g. b--) the value of the variable is

returned before the operation is carried out. This is called postfix notation.

Based on the above, what output do you think would be generated by the following code?

// Unary decrement

let a = 2;

console.log("a before post-decrement", a);

console.log("Post-decrement:", a--);

console.log("a after post-decrement", a);

console.log("Pre-decrement:", --a);

console.log("a after pre-decrement", a);

OUTPUT

https://github.com/pdst-lccs/lccs-javascript/blob/main/ch5_arithmeticExpressions/unartIncrDecr.js
https://github.com/pdst-lccs/lccs-javascript/blob/main/ch5_arithmeticExpressions/unaryDecrEx.js

JavaScript Manual for LCCS Teachers 49

Compound Assignment Operators

Arithmetic operators and assignments can be combined together using JavaScript’s

compound assignment operators. These operators are a shorthand syntactic construct that

can be used when the value of a variable is being re-computed in terms of itself.

The most common compound assignment operators are +=, −=, ∗= and /=. A simple

example of their use shown below.

let score = 100; Initialise a variable called score to 100

score += 50; // 150 Add 50 to score – new value is 150

score -= 10; // 140 Subtract 10 from score – new value is 140

score /= 2; // 70 Divide score by 2 – new value is 70

score *= 5; // 350 Multiply score by 5 – new value is 350

KEY POINT: In a compound assignment an operation is carried out on a variable

and the result is assigned to that same variable.

Compound assignment operators take two operands – the left operand must be the name of

a variable and the right operand must be an expression. The operation is then applied to the

two operands and the resulting value is stored in the left operand.

The table below summarises JavaScript’s main compound assignment operators:

JavaScript Manual for LCCS Teachers 50

Type Conversions

We already know that the addition operator (+) returns the sum of two numeric values. This

works fine when the datatype of both operands is number as show in the examples here.

1 + 2 returns 3

1 + −2 returns −1 and

1.234 + 4.321 returns 5.555

But what happens when the datatype of either or both operands is not a number? Let’s look

at a few examples.

Expression Result Comment

"Joe" + "Blogs" "JoeBlogs"
The addition of two strings results in a new string
which is made up of the first string followed the
second. This is known as concatenation.

1 + "Bloggs" "1Blogs"
The addition of a numeric value and a string results in
a new string. The numeric value is converted to a
string and the two values are concatenated

1 + "2" "12" Again the first operand is converted to a string.

1 + 2 + "Goals" "3Goals" The operation is carried out from left-to-right.

1 + (2 + "Goals") "12Goals" The brackets take precedence

KEY POINT: In JavaScript the + operator will perform arithmetic addition only when

both operands can be converted to a numeric value. The default behaviour of the +

operator is string concatenation.

For all operations other than addition (i.e. −, ∗, / etc.) JavaScript will try to convert any string

operands to numbers. (The reason for this is because strings do not support these other

arithmetic operations.) This is demonstrated in the following expressions:

 10 - "2" evaluates to 8

 "10" * "50" evaluates to 500

 "100" / 50 evaluates to 2

The strings shown here are referred to as

numeric strings (because they can be converted

to numbers). The conversion is said to be implicit

because it happens automatically.

JavaScript Manual for LCCS Teachers 51

If neither operand is a numeric string JavaScript will return the value NaN (Not a Number).

The expressions below all evaluate to NaN.

 "fifty" - "ten"

 5 * "hotel"

 99 / "true"

NaN is a unique ‘quirk’ of JavaScript. Not only is it a primitive type but it is also a value.

Furthermore, it is a value which is not equal to itself (or any other value)! Consequently, the

following expressions all return false

 "fifty" == NaN // false

 "5" == NaN // false

 5 == NaN // false

 NaN == NaN // false

The implication is that when we want to find out whether an expression is a number or not

we cannot compare it to NaN. But fear not! In order to determine whether a value is a

number or not JavaScript provides a global function called isNaN. This function returns

true if the argument passed to it is not a number (i.e. cannot be converted to a number);

false otherwise.

An alternative way to determine whether a value is a number is to use the isFinite global

function.

Example uses of isNaN and isFinite are shown side by side in the table below. The

difference is subtle but important.

 isNaN("fifty") // true

 isNaN("10") // false

 isNaN(99) // false

 isNaN(NaN) // true

 isFinite("fifty") // false

 isFinite("10") // true

 isFinite(99) // true

 isFinite(NaN) // false

isNaN isFinite

JavaScript Manual for LCCS Teachers 52

Arithmetic and Booleans

When Boolean values are used in arithmetic expression JavaScript converts true and

false to numeric values 1 and 0 respectively. The excerpt below demonstrates how +

behaves when either or both of the operands are Boolean. (The output of each line is

displayed in the comment.)

console.log(true + 1); // 2

console.log(false + 1); // 1

console.log(true + false); // 1

console.log(true + "false"); // true/false

Subtraction, multiplication and division all behave in a similar manner.

console.log(true - false); // 1

console.log(99 * true); // 99

console.log(true / 1); // 1

console.log(false / 1); // 0

console.log(true / false); // Infinity

Note in the last example - division by false is the same as division by zero. In JavaScript

division by zero always results in the value Infinity.

https://github.com/pdst-lccs/lccs-javascript/blob/main/ch5_arithmeticExpressions/arithOpsBoolean2.js
https://github.com/pdst-lccs/lccs-javascript/blob/main/ch5_arithmeticExpressions/arithOpsBoolean1.js

JavaScript Manual for LCCS Teachers 53

The Math global object5

Math is a global JavaScript object. This means that it is automatically available to all

JavaScript programs.

Some of the more common operations supported by Math are described in the table below.

Method Description Examples Result

Math.round(x);
Returns x rounded up or

down to the nearest integer

Math.round(9.7); 10

Math.round(9.3); 9

Math.ceil(x);
Returns the nearest integer

greater than or equal to x

Math.ceil(9.7); 10

Math.ceil(9.3); 10

Math.floor(x);
Returns the nearest integer

less than or equal to x

Math.floor(9.7); 9

Math.floor(9.3); 9

Math.pow(x, y);
Returns x raised to the power

of y.

Math.pow(2,5); 32

Math.pow(5,2); 25

Math.sqrt(x);
Returns the positive square

root of x

Math.sqrt(25); 5

Math.sqrt(-25); NaN

Math.cbrt(x); Returns the cube root of x
Math.cbrt(64); 4

Math.cbrt(-64); -4

Math.abs(x);
Returns the absolute value of
x

Math.abs(25); 25

Math.abs(-25); 25

Math.max(x, …)
Returns the maximum of a list
of 1 or more numbers

Math.max(1,-2,-1); 1

Math.min(x, …)
Returns the minimum of a list
of 1 or more numbers

Math.min(1,-2,-1); -2

In general, a Math method will return NaN if the argument(s) provided are invalid.

The Math object also supports a number of constants. The most notable of these is

Math.PI which is defined as 3.141592653589793.

5 See https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math for more details

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math

JavaScript Manual for LCCS Teachers 54

Random Numbers

The Math library also contain a function called random which returns a pseudo-random

floating-point number between 0 (inclusive) and 1 (exclusive).

KEY POINT: to generate a random positive integer between min and max inclusive

use the following line of JavaScript code.

Math.floor(Math.random() * (max - min +1)) + min;

Some example uses of Math.random are given in the table below:

Example Description

Math.floor(Math.random() * 10);
Returns an integer r such that:

0 ≤ r < 10

Math.floor(Math.random() * 11);
Returns an integer r such that:

0 ≤ r ≤ 10

Math.floor(Math.random() * 10) + 1;
Returns an integer r such that:

1 ≤ r ≤ 10

Write a JavaScript statement to generate a random number, r between two

integers x and y such that:

(i) x < r < y

(ii) x ≤ r ≤ y

Outline three possible scenarios where the use of random numbers
could be useful.

1.

2.

3.

JavaScript Manual for LCCS Teachers 55

Operator Precedence

Operator precedence refers to the order in which operators are applied when an expression

is being evaluated.

Expressions with only one type of operation are usually evaluated from left to right. However,

when an expression contains more than one kind of operation JavaScript uses its

precedence rules to determine what order to evaluate the expression. These precedence

rules describe the relative importance of the JavaScript operators in relation to one another.

The precedence of the more commonly used JavaScript operators is illustrated below6.

Notes:

1) Operators with higher precedence appear higher up in the table than operators with

lower precedence. This is why, in the absence of brackets, Multiplication and Division

are always carried out before Addition and Subtraction. Therefore, 2 + 3 × 4 → 14 (and

not 20) and 10 − 8 ÷ 2 + 3 → 9 (and not 4).

2) Operators that appear on the same row have the same level of precedence. These

operators are usually evaluated from left-to-right. For example, Multiplication and

Division have the same level of precedence. Therefore, 8 × 4 ÷ 2 → 16 whereas, 8 ÷ 4 ×

2 → 4. Similarly, 8 + 4 − 2 → 10 and 8 − 4 + 2 → 6

6 For a more complete reference on operator precedence browse to:
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Operator_Precedence

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Operator_Precedence

JavaScript Manual for LCCS Teachers 56

3) The operators on the lines highlighted in bold are evaluated from right-to-left. For

example, 2 ∗∗ 3 ∗∗ 2 → 512 (i.e. 29 and not 82 as might be expected). Notice also that

assignments are evaluated from right-to-left. This explains why the expression on the

right hand side of an assignment operator is evaluated first (i.e. before the result is

assigned).

4) As a final note it is worth pointing out that although grouping (i.e. brackets), the new

operator, the dot operator (also known as the member operator because it is used to

access object properties and invoke their methods) and function calls – none of which

are shown in the precedence table on the previous page - all share the same level of

precedence which is higher than that of all the operators shown.

5) Brackets have the highest level of precedence when it comes to evaluating JavaScript

expressions. So, any expression inside brackets will always be evaluated first. For

example, (2 + 3) × 4 → 20

Use the space below to record any points of note in relation to
operator precedence

JavaScript Manual for LCCS Teachers 57

Programming Exercises (Arithmetic Operators)

Try the following.

1. Given that x==2, and y==6 what do the JavaScript expressions below evaluate to.

a) x+y

b) x-y

c) 5*y

d) 5*x+y

e) 3*(x+y)

f) x*y+4

g) y/x+1

h) y/x+y

i) (x*y)+(y/x)

j) y%x

2. Write JavaScript expressions to evaluate each of the following:

a) 74 multiplied by 64

b) 81 divided by 10

c) 81 divided into 100

d) 25𝜋

e) (7 − 1) ÷ (4 − 2)

f)
10 x 50

5

g) 10 ×
 50

5

h) 72

i) √7

j) 2√7

In all cases once you have your expression written you should use it in an assignment

statement to store your answer in an appropriately named variable and then display the

value of that variable in a meaningful message on the console. So for example the

answer for part a) above, 74 multiplied by 64 would be:

let ans = 74 * 64;

console.log("74+64=", ans);

3. Write a line of code that adds the numbers 62 and 47 and displays the result.

4. Write code to do the following:

a) add the numbers 62 and 47 and store the answer in a variable

b) display the contents of the variable

5. The arithmetic mean of two numbers is calculated by adding them and dividing the result

by 2. Write the code to calculate and display the arithmetic mean of 62 and 47.

JavaScript Manual for LCCS Teachers 58

6. Given the following code fragment that initialises three variables - x, y and z - write a line

of code that computes and displays their arithmetic mean.

let x=27;

let y=15;

let z=18;

7. Predict the output following code:

let x=3*4;

let y=10/2;

let z=6-1;

let sum=x+y+z;

console.log(x, y, z, sum);

8. What (if anything) is wrong with the following? (You can assume x, y and z have already

been initialised.)

a) let a=x+y;

b) let 3=x+y;

c) let 10/2=5;

d) let sum=x+y+z;

e) let sum=xy+z;

k) let a=8*(-2);

l) let b=(8)(2);

m) let c=8*(+2);

n) let c=4*a;

o) let c=4a;

9. The area of a rectangle can be computed by multiplying its width by its height. Given the

following two lines of code to initialise the variables width and height, write a third line

that computes and displays the rectangle’s area.

let width=7;

let height=5;

10. The perimeter of a rectangle can be computed by adding twice the width to twice its

height. Given the following two lines of code which initialise these two variables, write a

third line that computes and displays the rectangle’s perimeter.

let width=7;

let height=5;

11. Given the following formula to convert Fahrenheit (𝑓) to Centigrade (𝑐) write a program to

convert 100℉ into ℃ and display the result.

𝑐 = (𝑓 − 32) ×
5

9

JavaScript Manual for LCCS Teachers 59

12. Now modify the program you just wrote to prompt the user to enter any Celsius value

and display its Fahrenheit equivalent.

13. Read the following code carefully (the values are in cents) and answer the questions that

follow:

let fifties=4;

let twenties=5;

let tens =7;

let total=fifties*.5 + twenties*.2 +tens*.1;

console.log(total);

a) How many variables does the program use?

b) What is the purpose of each variable?

c) What does the code do?

14. Modify the above program to calculate the number of euro given that I have a five euro

note, 22 fifty cent coins, 17 twenty cent coins, 25 ten cents and 13, two cent pieces.

15. Modify the above program (again) to prompt the user to enter the various values and

display the total amount.

16. The length of the circumference of a circle is given by the formula 𝑙 = 2𝜋𝑟. Write a

program that prompts a user to input a value for the length of the radius (r), and then

calculates and displays the length of the circumference.

17. Write a program to calculate the area of a circle. (Note: 𝐴 = 𝜋𝑟2)

18. Two points in a plane are specified using the coordinates (𝑥1, 𝑦1) and (𝑥2, 𝑦2). Write a

program that uses the formula below to calculate the slope of a line through two points

entered by the user.

𝑠𝑙𝑜𝑝𝑒 =
𝑦2 − 𝑦1

𝑥2 − 𝑥1

19. Write a program that accepts two points and then determines and displays the distance

between them

JavaScript Manual for LCCS Teachers 60

6. Boolean Operators and Expressions
Boolean expressions are expressions which can evaluate to either true of false. Simple

Boolean expressions can be programmed using JavaScript’s comparison operators and

compound Boolean expressions can be programmed using JavaScript’s logical operators.

Both types of operators are now discussed.

Comparison Operators

As the name suggests comparison operators are used to compare two values. Values can

be compared for equality or for difference. The result of a comparison will always be either

true or false.

Comparison operators are important because they allow programmers to construct

conditions. Conditions are the basis of control structures such as loops and selection

statements which are used by programmers to control the runtime execution of their

programs. They are the basic building blocks of programs.

The table below lists JavaScript’s comparison operators7.

When values being compared are of the same datatypes the behaviour of the comparison

operators is relatively straightforward – numbers are compared on magnitude and strings are

7 The full reference for comparison operators can be found by browsing to:
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Comparison_Operators

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Comparison_Operators

JavaScript Manual for LCCS Teachers 61

compared alphabetically i.e. on a character by character basis using the Unicode value of

each character. Some examples of comparisons involving the same types are now given:

// Comparisons – same datatypes

console.log(3 < 20); // true

console.log(7 != 7); // false

console.log(5 >= 7); // false

console.log("cat" == "dog"); // false

console.log("man" != "woman"); // true

console.log("man" < "woman"); // true

console.log("man" <= "men"); // true

When the datatypes are different JavaScript converts the values to numbers before

comparing them. For example, if one operand was a string and the other was a number

JavaScript will attempt to convert the string to a number before the comparison. If the

conversion is successful, the two numbers are compared in the normal way; if the

conversion is unsuccessful it will return NaN which always results in false when compared

with anything. This is demonstrated in the following examples:

// Comparisons - strings and numbers

console.log(3 < "20"); // true ("20" converted to 20)

console.log("3" <= "20"); // false (comparing two strings: Unicodes are 3:51, 2:50)

console.log("5" == 5); // true ("5" converted to 5)

console.log("5" === 5); // false (because they are not strictly equal)

console.log("five" == 5); // false ("five" is NaN)

console.log("shark" > "5"); // true (comparing two strings: Unicodes are s:115, 5:53)

console.log("shark" > 5); // false ("shark" is NaN)

When Boolean values are being compared to numbers, true converts to 1 and false

converts to 0. This is exemplified in the example code below.

// Comparisons - boolean and numbers

console.log(true == 1); // true

console.log(true === 1); // false (because they are not strictly equal)

console.log(99 != true); // true

console.log(false != 0); // false

Note: Two variables are said to be strictly equal (===) to each other if the values they

contain are both equal and of the same datatype. If the values are the same but the

datatypes are different then the variables are ‘just’ equal (==) to one another.

https://github.com/pdst-lccs/lccs-javascript/blob/main/ch6_booleanExpressions/comparison1.js
https://github.com/pdst-lccs/lccs-javascript/blob/main/ch6_booleanExpressions/comparison2.js
https://github.com/pdst-lccs/lccs-javascript/blob/main/ch6_booleanExpressions/comparison3.js

JavaScript Manual for LCCS Teachers 62

Test your understanding (comparison operators)

Try the following.

1. What do these expressions evaluate to? (true or false)

a) 7 == 7

b) 7 ! = 7

c) 7 >= 6

d) 2 < 3

e) 3 < 2

2. The following conditions all evaluate to false. Change the operator so that they

would evaluate to true. (You can have more than one answer for each part if you wish.)

a) 4 < 3

b) 8 >= 9

c) 5 == 4

d) true != true

e) 99 == false

f) 8 < "10"

g) "8" != 8

h) "8" == 8

i) "8" === 8

3. Assuming 𝑥 = 1, and 𝑦 = 0 to what do the conditions below evaluate?

a) 𝑥 > 5

b) 5 > 𝑥

c) 𝑦 <= 0

d) 0 == 𝑦

e) 𝑥 == 𝑦

f) 𝑥 ! = 𝑦

g) 𝑥 > 𝑦

h) 𝑦 > 𝑥

i) 𝑥 <= 𝑦

j) 𝑥 >= 𝑦

JavaScript Manual for LCCS Teachers 63

Logical Operators

We know from the previous section that comparison operators can be used to construct

simple conditions. In this section we look at how these simple conditions can be connected

using JavaScript’s logical operators – shown in the table below - to form new conditions

called compound conditions.

KEY POINT: A compound condition is made up of two or more simple conditions.

Conditions can be connected using JavaScript’s logical operators, ! (not), && (and),

and || (or).

As can be seen from the syntax column in the above table, the three logical operators – !

(logical NOT), && (logical AND), and || (logical OR) – all operate on operands which are

Boolean expressions8 (shown for example as expr1 in the above table).

Logical NOT is a unary operator which means that it requires just one operand to work. Both

logical AND, and logical OR are binary operators meaning that they require two input

operands. For the sake of simplicity, it is safe to think of the value returned by the logical

operators as being either true or false.9

The rules for how these simple Boolean expressions are combined are expressed in truth

tables. The truth tables for logical NOT, logical AND, and logical OR are now presented.

Each truth table lists all the possible inputs in the left column(s) and the corresponding

outputs in the rightmost column.

8 The operands can, in fact, be of any datatype - not just Boolean. This is because non Boolean operands are
converted to truthy or falsey values as part of their evaluation.
9 Non-Boolean return values can always be converted to Boolean primitives.

JavaScript Manual for LCCS Teachers 64

NOT

The ! (logical NOT) operator is used to invert a single Boolean value. The truth table for

NOT is shown below. A is the input and !A is the output. The first row in the table shows that

whenever A is true, !A is false.

Truth table for logical NOT

AND

The truth table for && (logical AND) is shown below. The first two columns show the inputs A

and B; the third column is the output A && B. The first row in the truth table shows that

whenever both inputs A and B are false then the output A && B is also false. The second

row shows that if A is false and B is true then A && B is false and so on.

Truth table for logical AND

OR

The truth table for || (logical OR) is shown below. The first two columns show the inputs A

and B; the third column is the output A || B. The first row in the truth table shows that

whenever both inputs A and B are false then the output A || B is also false. The second row

shows that if A is false and B is true then A || B is true and so on.

Truth table for logical OR

JavaScript Manual for LCCS Teachers 65

Examples

1. The table below shows how logical operators are applied to the simple Boolean

expressions shown in the leftmost column called (i.e. Condition)

Condition Result Explanation

! (2 == 5) true
2==5 is false

not false is true

! (2 < 5) false
2<5 is true

not true is false

(5 > 2) && (5 > 4) true

5>2 is true

5>4 is true

true and true is true

(5 > 2) && (5 > 7) false

5>2 is true

5>7 is false

true and false is false

(3 > 2) || (3 > 4) true

3>2 is true

3>4 is false

true or false is true

2. For the purpose of this example assume the variable valid is true and the variable

finished is false.

Condition Result Explanation

!valid false not true is false

!finished true not false is true

finished && valid false false and true is false

finished || valid true false or true is true

finished || !valid false
false or not true

false or false is false

JavaScript Manual for LCCS Teachers 66

KEY POINT: A truth table is a convenient way of showing the rules for combining

Boolean expressions

3. Let’s say we had a variable called age and we wanted to program a computer to

determine whether a person was a teenager or not. We know a teenager is a person

whose age is between 13 and 19 inclusive so we will need to tell the computer to

compare age to these two values. To do this we ask three questions:

o is the value of age greater than or equal to 13?

o is age less than or equal to 19?

o is age greater than or equal to 13 AND is age less than or equal to 19?

The first two questions can be expressed in JavaScript using comparison operators as

follows

- age >= 13

- age <= 19

We form our compound condition by using the logical and operator, && to combine the two

simple conditions as follows:

- ((age >= 13) && (age <= 19))

In order to evaluate the above compound expression, the following four possibilities need to

be considered:

1) age >= 13 is false and age <= 19 is false. There is no possible age that could be

both less than 13 and greater than 19. So, the only logical conclusion is that the person

is not a teenager.

2) age >= 13 is false but age <= 19 is true. (For example, the age could be 12.) In

this case the overall expression evaluates to false and the computer can conclude that

the person is not a teenager.

3) age >= 13 is true but age <= 19 is false. (For example, the age could be 21.) In

this case the overall expression evaluates to false and the computer can conclude that

the person is not a teenager.

JavaScript Manual for LCCS Teachers 67

4) age >= 13 is true and age <= 19 is true. (For example, the age could be 16.) In

this case the overall expression evaluates to true and the computer can conclude that

the person is a teenager.

The four possibilities are summarised in the table below. The first two columns contain the

inputs, the output is displayed in the third column. As can be seen there is only one situation

that yields an output of true (highlighted). This occurs when the age is between 13 and 19

inclusive. In all other cases the outputs are false.

age >=13 age <=19 age >=13 && age <=19

false false false

false true false

true false false

true true true

The output column on the right indicates whether a person is a teenager or not

KEY POINT: Truth tables can be used as an aid to evaluating Boolean expressions.

By listing all the inputs on the left hand side we can then use the standard tables for

NOT, AND, and OR to look up the results and record them in the output column.

JavaScript Manual for LCCS Teachers 68

4. Construct the truth table for A AND NOT B i.e. A && !B

Solution

In the truth tables shown below 1 is used to represent a value of true and 0 a value of

false

STEP 1: We start off by constructing a truth table with all the possible combinations of

inputs.

𝑨 𝑩

0 0

0 1

1 0

1 1

STEP 2: We add the first output column for NOT B

𝑨 𝑩 ! 𝑩

0 0 1

0 1 0

1 0 1

1 1 0

STEP 3: The NOT B column just created is ANDed with 𝐴 to give our desired output column

A AND NOT B

𝑨 𝑩 ! 𝑩 𝑨&&! 𝑩

0 0 1 0

0 1 0 0

1 0 1 1

1 1 0 0

JavaScript Manual for LCCS Teachers 69

5. Construct the truth table for NOT A OR B i.e., !A || B

Solution

As was the case in the previous Example 1 is used to represent a value of true and 0 a

value of false in the truth tables shown below.

STEP 1: We start off by constructing a truth table with all the possible combinations of

inputs.

𝑨 𝑩

0 0

0 1

1 0

1 1

STEP 2: We now add the first output column NOT A

𝑨 𝑩 ! 𝑨

0 0 1

0 1 1

1 0 0

1 1 0

STEP 3: The NOT A column just created is ORed with 𝐵 to give our desired output column

NOT A OR B

𝑨 𝑩 ! 𝑨 ! 𝑨||𝑩

0 0 1 1

0 1 1 1

1 0 0 0

1 1 0 1

JavaScript Manual for LCCS Teachers 70

Boolean Logic

Boolean logic is a branch of Mathematics in which there are only two values – true and

false. It was invented by a mathematician named George Boole 1815-1864 who was the

first professor of Mathematics at University College Cork (UCC). In recent times Boole has

become known all over the world as the forefather of the information age - it is no

exaggeration to state the Boolean Logic forms the basis for all digital electronic technology

and all software systems.

Boolean logic is useful because it provides a rigour for dealing with statements known as

propositions. Propositions are assertions that are either true or false. The following are

all examples of propositions:

 Three is an odd number

 1 + 1 = 3

 The time is 14:00 hours

 Cork is the largest county in Ireland

 The snail is moving at a speed of less than 1 metre per hour

 The car is travelling at a speed greater than 120km per hour

 The plane is at an altitude of between 31,000 and 38,000 feet

 The object is on the screen (e.g. game character, shape, animation, sprite etc.)

Propositions such as those listed above can be evaluated by humans without too much

difficulty. If we have the information that is needed, we can decide in an instant whether the

proposition is true or false. Although we may not be aware of it at the time we usually

evaluate propositions by comparing two values. Consider the assertion that the time is 14:00

hours – we compare the current time with 14: 00 and if they are the same the proposition is

true; otherwise it is false.

The power of Boolean logic is that it provides a framework for taking propositions such as

those listed above and writing them as Boolean expressions which can be included in our

programs (and then evaluated by the hardware at runtime). Boolean expressions are the

principle means by which programmers can infuse logic into their code and for this reason

they are a critical part of all computer programs. The ability to formulate Boolean

expressions is a vital skill which is part and parcel of the art of computer programming.

JavaScript Manual for LCCS Teachers 71

Test your understanding of logical operators

Try the following.

1. Evaluate each of the conditions shown in the table below given the variables:

𝑥 = 1, 𝑦 = 0 and 𝑧 = −1. (Results are true or false.)

Condition Result

!(x==y)

!(x==y+z)

!(y==x+z)

(x>y) && (y>z)

(z<x) && (y<x)

(x<y) || (y>z)

(y!=x+z) || (y>z)

2. Evaluate each of the conditions shown in the table below given the variables:

valid is false and finished is true (Results are true or false.)

Condition Result

!finished

!valid

!finished && !valid

!finished || valid

valid || finished

3. Evaluate the following expressions:
a) true or not true

b) false and (true or not true)

c) (true or false) and true

d) false or true or not false

e) not false and not true or not false

JavaScript Manual for LCCS Teachers 72

4. Complete the truth table below to find NOT A AND B

A B !A !A && B

0 0

0 1

1 0

1 1

5. Complete the truth table below to find A OR NOT B

A B !B A || !B

0 0

0 1

1 0

1 1

6. Complete the truth table below to find NOT (A AND B)

A B A && B !(A && B)

0 0

0 1

1 0

1 1

7. Complete the truth table below to find NOT (A OR B)

A B A || B !(A || B)

0 0

0 1

1 0

1 1

.

JavaScript Manual for LCCS Teachers 73

7. Selection Statements (conditionals)
Selection statements – also known as decision statements and conditionals - are written by

programmers to build alternative execution pathways into their programs.

The idea of selection is depicted in the illustration below.

Selection statements are a branching mechanism whereby, based to the outcome of a

decision, a specific block of code is selected for execution and other blocks of code are

skipped. The decision is typically programmed as a Boolean expression.

JavaScript, like most programming languages, support selection by including if statements

as part of its syntax. In this section we will explore the syntax and semantics of the

JavaScript if statement and its variants (i.e. else, and else-if) along with the switch

statement. We will also that a quick look at JavaScript’s only ternary operator and how it can

be used to perform selection.

JavaScript Manual for LCCS Teachers 74

The if statement

The syntax of the JavaScript if statement is as

follows:

if (condition) {

 statement(s)

} // end if

// program continues from here

The flow diagram to the right illustrates the

runtime execution of an if statement.

The first thing that happens when an if statement

is executed is the condition is evaluated and the

result is converted to true or false.

If the condition evaluates to true then the statement(s) inside the if statement will be

executed. The statement(s) inside the if statement are called the body of the if statement.

If the condition evaluates to false, the body of the if statement will be skipped and

execution will continue from the next line after the if statement.

The flow diagram shown above depicts two different execution paths – in one path the

statements(s) in the body of the if statement are executed, and in the other they are

bypassed.

The condition is by far the most important part of the if statement. Recall from earlier that the

values null, undefined, NaN, empty string (“”) and the number zero all evaluate to false.

All other values evaluate to true.

KEY POINT: The statement(s) that make(s) up the body of the if statement are only

executed if the condition evaluates to true.

JavaScript Manual for LCCS Teachers 75

Let’s look at some examples. (Try them out for yourself!)

Example 1

let age = prompt("Enter your age");

if (age >= 18) {

 console.log("You are an adult");

}

console.log("Thank you. Goodbye.");

The condition here is age >= 18. If the user enters 18 or any value greater than 18 the

condition will evaluate to true and the message You are an adult will be displayed. If the

user enters any value that is less than 18 the condition will evaluate to false and the

conditional code will not be executed.

KEY POINT: Programs can behave differently each time they are run. This runtime

behaviour depends on the data provided to the program and the conditions

programmed by the programmer.

The last line of code in the example is outside the if statement and will therefore always be

executed regardless of the outcome of the condition. The program always displays the

message Thank you. Goodbye.

So, in summary, depending on the input the possible outputs are:

You are an adult
Thank you. Goodbye.

or just
Thank you. Goodbye.

Note that the two curly braces - opening, { and closing, } - are only needed when the

condition’s body contains more than one line of code. So technically, they are not needed in

this example because there is only one line of code in the body of the if-statement.

https://github.com/pdst-lccs/lccs-javascript/blob/main/ch7_selectionStatements/ifExample1.js

JavaScript Manual for LCCS Teachers 76

Example 2

In this example the user is prompted to enter the current year. If the value entered is the

same as the year set on the computer, the program will display the messages:

You are correct
Well done!

let date = new Date();

let computerYear = date.getFullYear();

let userYear = prompt("Enter the current year");

if (userYear == computerYear) {

 console.log("You are correct");

 console.log("Well done!");

}

console.log("The current year is", computerYear);

Again, the last line is executed unconditionally. Try this example with a year other than the

current year (e.g. enter 2020 and see what happens).

Note that the curly braces are needed in this example because that condition’s body has

more than one statement.

Example 3

In this example, the condition hourlyPay < minimumWage always evaluates to true and

therefore the program will always generate the same output.

let hourlyPay = 5;

const minimumWage = 10;

if (hourlyPay < minimumWage){

 console.log("The hourly rate of pay is below the minimum wage.");

}

console.log("Have a nice day!");

Experiment!

What output would the above program generate if hourlyPay was set to

15? What about 10? Modify the program so that the user is prompted to

enter a value for the hourly pay rate.

https://github.com/pdst-lccs/lccs-javascript/blob/main/ch7_selectionStatements/ifExample2.js
https://github.com/pdst-lccs/lccs-javascript/blob/main/ch7_selectionStatements/ifExample3.js

JavaScript Manual for LCCS Teachers 77

Programming Exercises

Try the following.

1. Study the code below carefully and predict its output in the space provided.

let x = 3;

let y = 2;

if (x == y) {

 console.log(x, "is equal to", y);

}

if (x != y) {

 console.log(x, "is not equal to", y);

}

if (x >= y) {

 console.log(x, "is greater than or equal to", y);

}

if (x > y) {

 console.log(x, "is greater than", y);

}

if (x <= y) {

 console.log(x, "is less than or equal to", y);

}

if (x < y) {

 console.log(x, "is less than", y);

}

What output would be generated if the initial values of x and y were set using the values

shown below:

a) x=2 and y=2

b) x=2 and y=3

c) x="Jim" and y="Jam"

2. Write a program to accept a single number and display the word NEGATIVE if the

number is less than zero

3. Write a program to accept a single number and display the word BOILING if the number

is 100 or greater.

4. What’s wrong with the following? Suggest two solutions to the problem.

// Prompt user to enter a value 0 - 100
let result = prompt("Enter student result");

if (mark == 100) {
 console.log("Full marks - well done");
 console.log("Perfect score!");
}
console.log("The result was", result);

https://github.com/pdst-lccs/lccs-javascript/blob/main/ch7_selectionStatements/ifExercise4.js
https://github.com/pdst-lccs/lccs-javascript/blob/main/ch7_selectionStatements/ifExercise1.js

JavaScript Manual for LCCS Teachers 78

The if-else statement

An else clause is always used in conjunction with an if statement. It is used to provide an

alternative execution path in situations when the if condition evaluates to false.

The syntax of the JavaScript if-else statement is

as follows:

if (condition) {

 statement(s)

} // end if

else {

 statement(s)

} // end else

// program continues from here

The flow diagram illustrates how the if-else statement works.

The condition is evaluated and depending on the outcome either the statements inside the if

block or the statements inside the else block are executed.

 If the condition evaluates to true the statements inside the if block are executed.

 If the condition evaluates to false the statements inside the else block are executed

KEY POINT: Only one set of statements will always be executed either the if block

or the else block. Never both!

Once the selected block of code has been run, execution continues from the next line following

the if-else statement.

JavaScript Manual for LCCS Teachers 79

Let’s look at some examples.

Example 1

// if-else statement

let num1 = prompt("Enter a number");

let num2 = prompt("Enter another number");

if (Number(num1) >= Number(num2)){

 console.log(num1, "is greater than or equal to", num2);

}

else {

 console.log(num1, "is less than", num2);

}

console.log("Program execution continues from here");

JavaScript evaluates the condition, Number(num1) >= Number(num2), and, depending

on the outcome either the if block or the else block (never both) is executed.

For an input of 5 and 7 the output generated would be:

For an input of 12 and 7 the output generated would be:

The last line is not part of the if-else statement and so it is always executed.

Experiment!

What output would the above program generate if the two numbers entered

were the same? Does the program work with negative numbers? What

would happen if the condition was just num1 >= num2? Make the change and

try 12 and 7 as inputs. Can you explain the output? Modify the program so

that it uses < in the condition (instead of >=)

https://github.com/pdst-lccs/lccs-javascript/blob/main/ch7_selectionStatements/ifElseExample1.js

JavaScript Manual for LCCS Teachers 80

Example 2

This example compares the date entered by a user to the computer’s internal date.

let date = new Date();

let computerYear = date.getFullYear();

let userYear = prompt("Enter the current year");

if (userYear != computerYear) {

 console.log("Incorrect answer");

 console.log("The current year is", computerYear);

} else {

 console.log("You are correct");

 console.log("Well done!");

}

Use the space below to list any differences in logic between this
example and Example 2 in the previous section

Example 3

The condition used in this example - num1 % 2 == 0 – demonstrates how a program can

determine whether a number is even or odd.

let num1 = prompt("Enter a number");

if (num1 % 2 == 0) {

 console.log(num1, "is even");

}

else {

 console.log(num1, "is odd");

}

The program performs a ‘divisibility by 2 test’ and displays the result.

What output would this example program display if the numbers entered were 10 and 5?

a) 10 _____________________

b) 5 _____________________

Use the program to see if it works for negative integers. What about zero?

Challenge!

Modify this program so that it reads a second number – num2 – and then

displays whether or not num1 is evenly divisible by num2.

https://github.com/pdst-lccs/lccs-javascript/blob/main/ch7_selectionStatements/ifElseExample2.js
https://github.com/pdst-lccs/lccs-javascript/blob/main/ch7_selectionStatements/ifElseExample3.js

JavaScript Manual for LCCS Teachers 81

Programming Exercises

Try the following.

1. Study the two programs below carefully and answer the questions that follow. (You can

assume that 50 is a pass mark.)

let mark = prompt("Enter student mark");

if (mark >= 50) {

 console.log("Well done - you passed!");

 console.log("Some options now are");

 console.log("1. Get a job");

 console.log("2. Do an apprenticeship");

 console.log("3. Go to college");

 console.log("4. Travel the world!");

} else {

 console.log("Hard luck - unsuccessful!");

 console.log("Some options now are");

 console.log("1. Get a job");

 console.log("2. Repeat");

 console.log("3. Social Welfare");

 console.log("4. Travel the world!");

}

 let mark = prompt("Enter student mark");

if (mark <= 50) {

 console.log("Hard luck - unsuccessful!");

 console.log("Some options now are");

 console.log("1. Get a job");

 console.log("2. Repeat");

 console.log("3. Social Welfare");

} else {

 console.log("Well done - you passed!");

 console.log("Some options now are");

 console.log("1. Get a job");

 console.log("2. Do an apprenticeship");

 console.log("3. Go to college");

}

console.log("4. Travel the world!");

Program 1 Program 2

Are the programs logically equivalent? Explain any difference.

Which program do you think is better? Why?

2. Write a program that prompts the user to enter a year and display the word PAST if it is

before the current year and FUTURE if the year is greater than the current year.

3. Write a program that prompts the user to enter a single number and display the word

POSITIVE if the number is greater than zero and NEGATIVE if the number is less than

zero. What happens when you enter zero itself?

https://github.com/pdst-lccs/lccs-javascript/blob/main/ch7_selectionStatements/ifElseExercise1a.js
https://github.com/pdst-lccs/lccs-javascript/blob/main/ch7_selectionStatements/ifElseExercise1b.js

JavaScript Manual for LCCS Teachers 82

4. Study the program below carefully and answer the questions that follow.

// Generate two random numbers between 1 and 10 incl.

let n1 = Math.floor(Math.random() * 10) + 1;

let n2 = Math.floor(Math.random() * 10) + 1;

let message = "What is "+n1+" + "+n2;

let userAnswer = prompt(message);

if (userAnswer == n1+n2) {

 console.log("Correct - well done!");

} else {

 console.log("Sorry - incorrect answer!");

 console.log("The right answer is", n1+n2);

}

a) Describe what the program does.

b) What change would need to be made so that following line gets executed regardless

of what the user enters?
console.log("The right answer is", n1+n2);

c) The arithmetic expression n1+n2 appears twice in the above program. Are both

instances of this same expression always executed at runtime? Explain.

d) Without changing the logic of the program, suggest a change so that the expression

n1+n2 only occurs once in the program.

e) Let us say the condition was changed to userAnswer != n1+n2. What other

changes would need to be made so that the logic of the program remained unaltered.

5. Write a program that generates two random numbers and then asks the user to enter

their product. If the user is right the program should display Correct. Otherwise, the

program should display Incorrect.

https://github.com/pdst-lccs/lccs-javascript/blob/main/ch7_selectionStatements/ifElseExercise4.js

JavaScript Manual for LCCS Teachers 83

The else-if statement

The else-if statement provide the necessary logic to cater for situations where there are

more than two alternative possibilities.

The syntax of the if...else-if statement is as follows.

if (condition 1) {

 statements(s)

} else if (condition 2) {

 statements(s)

...

} else if (condition N) {

 statements(s)

} else {

 statements(s)

}

The logic flowchart is depicted below.

The else-if statement works by testing each condition in sequence until it finds one that

evaluates to true whereupon the associated statement(s) are executed and the statement

ends. If all the conditions evaluate to false then the optional else statements at the end

are executed (if they exist).

JavaScript Manual for LCCS Teachers 84

Let’s take a look at some examples.

Example 1

This program prompts the user to enter an integer and, depending on its sign, displays one

of the following three messages:

The number is positive
The number is negative
Neither positive nor negative so the number must be zero!

let number = prompt("Enter any integer:");

if (number > 0) {

 console.log("The number is positive");

} else if (number < 0) {

 console.log("The number is negative");

} else {

 console.log("Neither positive nor negative so the number must be zero!");

}

The third possibility is catered for by the else statement at the end. The three code listings

shown below are all logically equivalent even though the code is arranged in slightly different

orders. Try them for yourself! (Just change the example above to look like each of these.)

let number = prompt("Enter any integer:");

if (number == 0) {

 console.log("Neither positive nor negative so the number must be zero!");

} else if (number < 0) {

 console.log("The number is negative");

} else {

 console.log("The number is positive");

}

let number = prompt("Enter any integer:");

if (number < 0) {

 console.log("The number is negative");

} else if (number == 0) {

 console.log("Neither positive nor negative so the number must be zero!");

} else {

 console.log("The number is positive");

}

let number = prompt("Enter any integer:");

if (number > 0) {

 console.log("The number is positive");

} else if (number == 0) {

 console.log("Neither positive nor negative so the number must be zero!");

} else {

 console.log("The number is negative");

}

https://github.com/pdst-lccs/lccs-javascript/blob/main/ch7_selectionStatements/elseIfExample1.js

JavaScript Manual for LCCS Teachers 85

Example 2.

In this example the program compares two numbers entered by the user and then displays

an appropriate message stating how the numbers relate to each other.

let num1 = prompt("Enter a number");

let num2 = prompt("Enter another number");

if (Number(num1) > Number(num2)){

 console.log(num1, "is greater than", num2);

}

else if (Number(num1) < Number(num2)){

 console.log(num1, "is less than", num2);

}

else {

 console.log(num1, "is equal to", num2);

}

console.log("Program execution continues from here");

The table below illustrates various outputs for three different runs of the program.

Inputs
Outputs

num1 num2

12 12

32 16

1000 1

Each row of the table shows what the output would be for the given inputs. The inputs shown

only trigger two of the three possible scenarios catered for in the code (the less than block is

never executed). Only one of the three blocks of code is executed on each run.

Experiment!

What output would the program generate if the value entered for num1 was

1 and num2 was 1000. Does the program work for negative numbers? If the

first condition was changed to Number(num1) == Number(num2) what

other changes would need to be made? What would happen if you removed

the call to Number from the program (there are 4 occurrences)?

KEY POINT: Every time a program is run it can behave differently depending on the

data it is working with during that run.

https://github.com/pdst-lccs/lccs-javascript/blob/main/ch7_selectionStatements/elseIfExample2.js

JavaScript Manual for LCCS Teachers 86

Example 3.

The example below uses multiple else-if statements to display the capital city of a

country name entered by the user.

let country = prompt("Enter a country and I will tell you its capital");

if (country == "Ireland") {

 console.log("Dublin");

} else if (country == "Scotland") {

 console.log("Edinburgh");

} else if (country == "England") {

 console.log("London");

} else if (country == "Wales") {

 console.log("Cardiff");

} else if (country == "France") {

 console.log("Paris");

}

a) The code is programmed to work for Ireland, Scotland, England, Wales and France.

What happens if you enter the name of some other country?

b) Modify the program so that it displays the name of the country’s continent (i.e.

Europe) on a separate line underneath the capital. Can this be done by adding one

line?

c) Now extend the program so that it can deal with USA (Washington), Japan (Tokyo)

and Australia (Canberra). (Don’t forget to test for each new country.) Does the

problem you identified in Part a) still exist? Does the program display the correct

continent name?

d) Extend the program again – this time add the following code at the end. What

difference does this code make? Why does the else not have a condition attached?

else {

 console.log("Unknown country. Sorry.");

}

https://github.com/pdst-lccs/lccs-javascript/blob/main/ch7_selectionStatements/elseIfExample3.js

JavaScript Manual for LCCS Teachers 87

Programming Exercises

Try the following.

1. Write a program that prompts a user to enter a day number and then displays the

corresponding day name as per the following flowchart.

2. The following two lines of code can be used to retrieve the weekday number for the

computer on which they are run (0 for Sunday, 1 for Monday and so on)

let date = new Date();

let dayNo = date.getDay();

Modify your answer to question 1 so that instead of prompting the user to enter a day

number the program uses these two lines.

3. A certain Computer Science teacher gives five-point quizzes that are graded on the

scale 5-A, 4-B, 3-C, 2-D, 1-F, 0-NG. Write a program that accepts a quiz score as an

input and displays the corresponding grade as output.

JavaScript Manual for LCCS Teachers 88

4. The intention of the program below is to

display a student grade based on a

percentage mark entered by the user.

The table on the right illustrates how marks

are mapped to grades.

Study the code carefully and answer the

questions which follow. (This initial version

just deals with higher level grades, H1-H7.)

Mark (%) Grade

90 – 100 H1 O1

80 – 89 H2 O2

70 – 79 H3 O3

60 – 69 H4 O4

50 – 59 H5 O5

40 – 49 H6 O6

30 – 39 H7 O7

0 – 29 H8 O8

let mark = Number(prompt("Enter percentage mark (0-100):"));

if (mark >= 0) {

 console.log("H8");

} else if (mark >= 30) {

 console.log("H7");

} else if (mark >= 40) {

 console.log("H6");

} else if (mark >= 50) {

 console.log("H5");

} else if (mark >= 60) {

 console.log("H4");

} else if (mark >= 70) {

 console.log("H3");

} else if (mark >= 80) {

 console.log("H2");

} else if (mark >= 90) {

 console.log("H1");

}

a) Why will the program not do what it is intended to do?

b) Suggest and implement solution to the problem.

c) Modify the (fixed) code from the previous question so that it stores the grade in a

variable (call it grade) and just one statement at the end to display its value.

d) Think about how the program could be modified so that it can cater for ordinary level

grades as well as higher level grades.

(One suggested solution to this problem is shown on the next page.)

https://github.com/pdst-lccs/lccs-javascript/blob/main/ch7_selectionStatements/elseIfExercise4.js

JavaScript Manual for LCCS Teachers 89

One possible solution to the last problem on the previous page can be broken into three steps

as follows:

1) prompt the user to enter either an ‘H’ or an ‘O’ to indicate higher or ordinary. This letter

is stored in a variable called gradeLetter.

2) set a variable gradeLevel to some value ranging from 1 to 8 depending on the mark

entered by the user

3) Display the grade as a combination of the gradeLetter and the gradeLevel.

The code is as follows.

let gradeLetter = prompt("Enter a letter: H = Higher, O = Ordinary");

let gradeLevel;

let mark = Number(prompt("Enter percentage mark (0-100):"));

if (mark >= 90) {

 gradeLevel = 1;

} else if (mark >= 80) {

 gradeLevel = 2;

} else if (mark >= 70) {

 gradeLevel = 3;

} else if (mark >= 60) {

 gradeLevel = 4;

} else if (mark >= 50) {

 gradeLevel = 5;

} else if (mark >= 40) {

 gradeLevel = 6;

} else if (mark >= 30) {

 gradeLevel = 7;

} else if (mark >= 0) {

 gradeLevel = 8;

}

console.log("Final Grade: ", gradeLetter + gradeLevel);

An alternative solution would be to use a nested if statement which is now explained.

Nested if-statements

A nested if statement as its name suggests is an if statement within an if -statement.

The syntax of a simple nested if is shown below. The first if statement is referred to as

the outer if and the nested if is referred to as the inner if.

if (condition) {

 if (condition) {

 statement(s)

 } // end inner if

} // end outer if

https://github.com/pdst-lccs/lccs-javascript/blob/main/ch7_selectionStatements/elseIfExercise4b.js

JavaScript Manual for LCCS Teachers 90

Although there is no limit to the number of if statements that can be nested, more than

three levels of nesting are rarely seen in practice. (After this point code can become difficult

to follow and there is usually a clearer alternative.). Three levels of nesting would look like

this.

if (condition1) {

 if (condition2) {

 if (condition3) {

 statement(s)

 } // end if 3

 } // end if 2

} // end if 1

The inner if condition will only be executed if the preceding if condition(s) evaluate(s) to

true.

Nesting can also occur inside the else clause - the syntax is as follows:

if (condition) {

 statement(s)

} // end if

else {

 if (condition) {

 statement(s)

 } // end if

 else {

 statement(s)

 } // end else

} // end else

JavaScript Manual for LCCS Teachers 91

Solution to grade problem using nesting

The program below shows how nesting can be used to cater for both Ordinary and Higher

level grades in mapping a percentage mark to a final grade.

let gradeLetter = prompt("Enter a letter: H = Higher, O = Ordinary");

let mark = Number(prompt("Enter percentage mark (0-100):"));

let grade;

if (gradeLetter == "H") {

 if (mark >= 90) {

 grade = "H1";

 } else if (mark >= 80) {

 grade = "H2";

 } else if (mark >= 70) {

 grade = "H3";

 } else if (mark >= 60) {

 grade = "H4";

 } else if (mark >= 50) {

 grade = "H5";

 } else if (mark >= 40) {

 grade = "H6";

 } else if (mark >= 30) {

 grade = "H7";

 } else if (mark >= 0) {

 grade = "H8";

 }

} // end if gradeLetter is "H"

else if (gradeLetter == "O") {

 if (mark >= 90) {

 grade = "O1";

 } else if (mark >= 80) {

 grade = "O2";

 } else if (mark >= 70) {

 grade = "O3";

 } else if (mark >= 60) {

 grade = "O4";

 } else if (mark >= 50) {

 grade = "O5";

 } else if (mark >= 40) {

 grade = "O6";

 } else if (mark >= 30) {

 grade = "O7";

 } else if (mark >= 0) {

 grade = "O8";

 }

} // end if gradeLetter is "O"

In the above program, the outer if is used to select the code for higher or the code for

ordinary. The selection (i.e. decision) is based on the condition gradeLetter == "H". If this

evaluates to false the program will then test the condition gradeLetter == "O" (specified in

the else part of the outer if).

Experiment!

What would happen if the user entered a letter other than ‘H’ or ‘O’? What if

the user entered a mark over 100 or negative mark?

https://github.com/pdst-lccs/lccs-javascript/blob/main/ch7_selectionStatements/nestedIf1.js

JavaScript Manual for LCCS Teachers 92

The code below implements the same logic as the program on the previous page. This

solution also uses nesting but here the if statements are nested in a slightly different order

// Alternative nesting to achieve the same result

let gradeLetter = prompt("Enter a letter: H = Higher, O = Ordinary");

let mark = Number(prompt("Enter percentage mark (0-100):"));

let grade;

if (mark >= 90) {

 if (gradeLetter == "H") {

 grade = "H1";

 } else if (gradeLetter == "O") {

 grade = "O1";

 }

} else if (mark >= 80) {

 if (gradeLetter == "H") {

 grade = "H2";

 } else if (gradeLetter == "O") {

 grade = "O2";

 }

} else if (mark >= 70) {

 if (gradeLetter == "H") {

 grade = "H3";

 } else if (gradeLetter == "O") {

 grade = "O3";

 }

} else if (mark >= 50) {

 if (gradeLetter == "H") {

 grade = "H5";

 } else if (gradeLetter == "O") {

 grade = "O5";

 }

} else if (mark >= 40) {

 if (gradeLetter == "H") {

 grade = "H6";

 } else if (gradeLetter == "O") {

 grade = "O6";

 }

} else if (mark >= 0) {

 if (gradeLetter == "H") {

 grade = "H8";

 } else if (gradeLetter == "O") {

 grade = "O8";

 }

}

Study the above code carefully. Make sure all the opening and closing braces match up.

Evaluate the above program. What is missing? Do you think the approach

taken in this solution is any better than the one on the previous page? Why?

Why not?

https://github.com/pdst-lccs/lccs-javascript/blob/main/ch7_selectionStatements/nestedIf2.js

JavaScript Manual for LCCS Teachers 93

Finding the maximum of three numbers

The program below determines and displays the largest of three numbers entered by the

user.

// max of 3

let x1 = Number(prompt("Please enter 1st number: "));

let x2 = Number(prompt("Please enter 2nd number: "));

let x3 = Number(prompt("Please enter 3rd number: "));

let max;

if ((x1 >= x2) && (x1 >= x3)) {

 max = x1;

} else if ((x2 >= x1) && (x2 >= x3)) {

 max = x2;

} else {

 max = x3;

}

console.log("The largest number you entered was", max);

Note the use of the logical AND operator, &&. The strategy used in this solution is to

compare each value to all the other values. This is explained as follows:

 The first condition tests whether x1 is greater than or equal to both x2 and x3. If the test

evaluates to true then we can conclude that x1 must be the largest of the 3 numbers

and so we save it in the variable max.

 If the first test fails the program moves on to test the second condition. This condition

asks whether x2 is greater than or equal to both x1 and x3. If the answer is yes then we

can save x2 in the variable max.

 If the second test fails the only possibility that remains is that x3 is the largest of the

three numbers and so we set max accordingly.

Key in the above program and test it. Does it work? What is the minimum

number of tests you would need to run in order to be sure it works?

Now evaluate the program. How many comparisons need to be made – look

at the best and worst cases. What if we wanted to find the largest of four

numbers? What about five?

https://github.com/pdst-lccs/lccs-javascript/blob/main/ch11_functions/maxOf3_v1.js

JavaScript Manual for LCCS Teachers 94

The flowchart diagrams below illustrate two alternative strategies that can be used to solve

the ‘max. of three’ problem. Implement and evaluate both solutions.

Solution A

The strategy taken here is to use a decision tree (implementation involves the use of

nesting).

Solution B

This is a more linear (sequential) strategy. It starts by assigning x1 to max and then

proceeds to compare each number to max. As it does so the value of max gets changed to

any number found to be larger.

JavaScript Manual for LCCS Teachers 95

Compare the two strategies shown on the previous page. Which do you

think is better and why? How does each solution scale?

Reflection!

What challenged you? What extended your thinking? How could this be

used in the LCCS classroom?

JavaScript Manual for LCCS Teachers 96

The ternary operator

The ternary operator is a shorthand way of writing an if-else statement. It is included here

for completeness.

The main use of the ternary operator is to assign a value to a variable based on the output of

some simple condition. Let’s say we wanted to determine the larger of two numbers and

store the result in a variable called max. We could write:

if (n1 > n2) {

 max = n1;

} else {

 max = n2

}

The same logic can be achieved with the ternary operator as follows.

let max = (n1 > n2) ? n1 : n2;

The operator has three parts (hence the name ternary) – delimited by a question mark and

colon. The syntax of the ternary operator is as follows:

condition ? expression1 : expression2

The condition is evaluated first. If the result is true the first expression is evaluated and

returned. Otherwise, if the condition evaluates to false the second expression is evaluated

and returned.

The example below assigns true to a variable called isEven if some integer represented

by num is even; otherwise isEven is assigned the value false.

let isEven = (num % 2 == 0) ? true : false;

JavaScript Manual for LCCS Teachers 97

The switch Statement

A switch statement is another code selection mechanism. The body of a switch

statement is made up of a number of separate case clauses. Each case clause comprises

a value and an associated block of code.

The statement works by testing an expression (e.g. a literal value or a variable) for equality

against each case value. If a match is found the statements that make up the corresponding

block of code are selected for execution.

The syntax of the switch statement is shown on the left below and the semantics are

explained on the right.

switch(expression) {

 case value1:

 statement(s)

 break;

 case value2:

 statement(s)

 break;

...

 default:

 statement(s)

} // end switch

Notes:

1) The result of the expression is compared to the value for a case using the strict equality

operator (===). The values must therefore match without any type conversion.

2) When the value being switched on is equal to a case, the statements following that

case will execute until a break statement is reached.

3) When a break statement is reached, the switch terminates, and the flow of control

jumps to the next line following the switch statement.

JavaScript Manual for LCCS Teachers 98

4) There can be any number of case statements within a switch. Each case is followed

by the value to be compared to and a colon.

5) Not every case needs to contain a break. If no break appears, the flow of control will

fall through to subsequent cases until a break is reached. (It is generally considered

good programming practice to include a break statement at the end of each set of case

statements.)

6) A switch statement can have an optional default case, which must appear at the

end of the switch. The default case can be used for performing a task when none of

the matches evaluate to true. Since default is usually left at the end of the switch

statement it usually doesn’t need to include a break statement. (It does no harm

however to include a break statement inside the default.)

KEY POINT: A switch statement is an alternative to the multiway else-if

construct described earlier in this section and is typically used when the number of

else-if branches start to exceed four or five.

The following two programs are logically equivalent. The program on the left makes repeated

use of else-if statements and the program on the right makes use of a switch statement

to do the same thing (i.e. display the word for any integer from 1-4.)

let x = prompt("Enter a number from 1-4")

if (x == 1) {

 console.log("One");

} else if (x == 2) {

 console.log("Two");

} else if (x == 3) {

 console.log("Three");

} else if (x == 4) {

 console.log("Four");

} else {

 console.log("Sorry. Unknown value.");

}

 let x = prompt("Enter a number from 1-4")

switch (x) {

 case 1:

 console.log("One");

 break;

 case 2:

 console.log("Two");

 break;

 case 3:

 console.log("Three");

 break;

 case 4:

 console.log("Four");

 break;

 default:

 console.log("Sorry. Unknown value.");

 break;

}

https://github.com/pdst-lccs/lccs-javascript/blob/main/ch7_selectionStatements/switchExample1.js

JavaScript Manual for LCCS Teachers 99

Programming challenge!

Implement the following program so that it uses a switch statement

let country = prompt("Enter a country and I will tell you its capital");

if (country == "Ireland") {

 console.log("Dublin");

} else if (country == "Scotland") {

 console.log("Edinburgh");

} else if (country == "England") {

 console.log("London");

} else if (country == "Wales") {

 console.log("Cardiff");

} else if (country = "France") {

 console.log("Paris");

}

Experiment!

Key in the following code and enter some values. See if you can figure out

what the code does. Describe exactly what it does and how it does it. Can

you find any bugs and, if so, can you suggest any solutions?

let num = prompt("Enter a number");

let rem = num % 10;

let suffix;

switch (rem) {

 case 1:

 suffix = "st";

 break;

 case 2:

 suffix = "nd";

 break;

 case 3:

 suffix = "rd";

 break;

 default:

 suffix = "th";

} // end switch

console.log("Output:", num+suffix);

https://github.com/pdst-lccs/lccs-javascript/blob/main/ch7_selectionStatements/switchChallenge1.js
https://github.com/pdst-lccs/lccs-javascript/blob/main/ch7_selectionStatements/switchChallenge2.js

JavaScript Manual for LCCS Teachers 100

Programming Exercises – Selection Statements

1. Write a program that prompts a user to enter a month number and then display the

number of days in that month using the name of the month in the output message.

(Assume February has 28 days.) For example, if the user enters 3, the program should

display the message – March has 31 days.

2. Write a program that prompts a user to enter two separate integers - a day number and a

month. The program should output the message The dd/mm are a valid combination if

the combination is valid, and The dd/mm combination is invalid otherwise. Examples of

invalid combinations are 32, 1 (January has only 31 days) and 5, 13 (there are only 12

months).

3. Write a program that prompts a user to enter a year and display whether the year

entered was (or will be) a leap year or not. A year is defined to be leap if it is exactly

divisible by 4 except when it is also exactly divisible by 100. Years that are exactly

divisible by both 4 and 100 are leap only if they are also divisible by 400. So,

 1992, 2020 and 2104 are leap years because they are divisible by 4 (and not by 100).

 1800, 1900 and 2200 are not leap because they are exactly divisible by 4 and 100 but are not

further divisible by 400.

 1600, 2000 and 2400 are leap because they are exactly divisible by 4 and 100 and 400.

There are many coding solutions to determine whether a year is a leap year or not. The

pseudo-code for one such solution is provided here. See if you can implement it.

if (year is not divisible by 4) (Not Leap)

else if (year is not divisible by 100) (Leap Year)

else if (year is not divisible by 400) (Not Leap)

else (Leap Year)

There are lots of other ways to express the same logic – see if you can come up with

some of your own!

https://en.wikipedia.org/wiki/Divisor

JavaScript Manual for LCCS Teachers 101

Reflect on all the exercises in this section.

Suggest how you could adapt any of the exercises for use in your own LCCS

classroom.

JavaScript Manual for LCCS Teachers 102

8. Iteration Statements (loops)
Iteration statements are commonly referred to as loops. They enable programmers to write

code that will be repeatedly executed at runtime.

The idea of iteration is shown below - the green line depicts the execution path of the loop.

The red line shows what happens when the loop is not executed.

A loop is made up of two key components – a loop guard and a loop body.

- A loop guard is a condition used to determine whether the loop body should be executed

or not. If the loop guard evaluates to true the loop body gets executed; otherwise it

doesn’t.

- A loop body is simply a block of code that gets executed over and over again. Every time

a loop body is executed it is known as an iteration. The loop guard is re-tested at the end

of every iteration and loop body is executed as long as the result of this test is true.

Once the loop guard condition evaluates to false the loop said to terminate and

processing continues at the next line after the loop body.

JavaScript Manual for LCCS Teachers 103

Loops are useful because they save programmers from having to copy-and-paste potentially

many lines of code in their programs. For example, let’s say a programmer wanted to display

the string Hello World 100 times on the output console. Without loops they would have to

write 100 lines of code – one line per each line of output – as follows

console.log("Hello World"); // 1st time

console.log("Hello World"); // 2nd time

console.log("Hello World"); // 3rd time

console.log("Hello World"); // 4th time

///

console.log("Hello World"); // 56th time. (Yawn!)

console.log("Hello World"); // 57th time. (Yawn! Zzz!)

///

console.log("Hello World"); // 99th time. (zzzZZ!)

console.log("Hello World"); // 100th time (At last!)

Hello World

Hello World

Hello World

Hello World

...

Hello World

Hello World

...

Hello World

Hello World

A 100 line program to display the string Hello World 100 times Program Output

KEY POINT: A loop is a programming construct that allows the same block of

code to be executed multiple times

The repetition in the above code is obvious. The diagram below illustrates how the repetitive

nature of this code can be exploited by loops.

JavaScript supports a number of different types of loops – while, do-while and for.

The syntax and semantics of each are now considered in turn.

https://github.com/pdst-lccs/lccs-javascript/blob/main/ch8_iterationStatements/helloWorld1.js

JavaScript Manual for LCCS Teachers 104

The while loop

The syntax of the while loop is as follows:

while (condition) {

 statement(s)

}

The code below demonstrates the use of a while loop to display Hello World 100 times.

let counter = 0;

while (counter < 100) {

 console.log("Hello World");

 counter++; // Add 1 to counter – eventually it will reach 100

}

That’s it – just five lines (as opposed to 100) - simple!

The semantics of while loops can be explained

using the flowchart to the right.

The key point is that loop body statements are

executed each time the loop guard condition

evaluates to true

In our Hello World example, the loop guard is

counter < 100. The two statements inside the

loop body are repeatedly executed as long as

counter remains less than 100. Notice that the

counter is incremented at the end of each iteration

ensuring that the loop will eventually end.

https://github.com/pdst-lccs/lccs-javascript/blob/main/ch8_iterationStatements/helloWorld2.js

JavaScript Manual for LCCS Teachers 105

Let’s look at some examples.

Example 1 (times tables)

In this example, we will develop a program to display the 7 times tables (up to 12).

Think about it – we need to display all the lines from 7 × 1 = 7 up to

7 × 12 = 84. The desired output is shown on the right.

In all of these output lines the first integer is constant i.e. 7. The

second integer is variable i.e. it varies from 1 up to 12. This could be

our loop counter – let’s call it counter.

The value on the right hand side of the equals sign is calculated by

multiplying 7 by counter.

Each output line is generated by the statement:

console.log("7 x", counter, "=", 7*counter);

The full program to display the 7 times table is now given:

let counter = 0;

while (counter <= 12) {

 console.log("7 x", counter, "=", 7*counter);

 counter++; // Add 1 to counter

The program shown below is a slight enhancement – it asks the user what times tables they

wish to have displayed.

let counter = 0;

let tables = prompt("What times tables do you require?");

while (counter <= 12) {

 console.log(tables, "x", counter, "=", tables*counter);

 counter++; // Increment counter

}

Key it in and try it out for yourself!

https://github.com/pdst-lccs/lccs-javascript/blob/main/ch8_iterationStatements/whileExample1A.js
https://github.com/pdst-lccs/lccs-javascript/blob/main/ch8_iterationStatements/whileExample1B.js

JavaScript Manual for LCCS Teachers 106

Example 2 (class average)

Let’s say we wanted to write a program that prompted the user to enter five integers and

then display their arithmetic mean.

One solution could be achieved as follows.

let x1 = Number(prompt("Enter integer value 1"));

let x2 = Number(prompt("Enter integer value 2"));

let x3 = Number(prompt("Enter integer value 3"));

let x4 = Number(prompt("Enter integer value 4"));

let x5 = Number(prompt("Enter integer value 5"));

let total = x1+x2+x3+x4+x5;

console.log("Mean value:", total/5);

This all seems to be a bit repetitive and verbose – these can often be sure signs that a loop

might be a better solution.

Let’s explore a solution to this problem that uses a while loop.

The loop solution will need to keep a running total of all the values entered. Once the final

value has been entered the mean can be calculated, simply by dividing the total by five. We

use pseudo-code as an initial step in the development of our solution.

Initialise the total to zero

Initialise a counter to 0

Loop 5 times (while the counter is less than 5)

 Prompt the user to enter an integer value

 Update the total with the value just entered (total+=value)

Display the total divided by 50

Challenge!

Can you translate the pseudo-code above into a JavaScript program?

KEY POINT: When the number of loop iterations is known before a program is

run, a counter variable can be used in the loop guard. This is called counter

controlled repetition.

https://github.com/pdst-lccs/lccs-javascript/blob/main/ch8_iterationStatements/whileExample2.js

JavaScript Manual for LCCS Teachers 107

Example 3 (sentinels)

In the previous two examples we used a counter to control the number of loop repetitions.

This was possible because we knew the number of times we wanted the loop body to be

executed in advance of running the program. However, there are many situations where the

programmer does not know the number of iterations required in advance. Consider for

example the problem of adding an unknown number of numbers.

The challenge here is to develop a loop guard that allows the loop to be executed a variable

number of times.

Initialise the running total to zero

Prompt the user to enter the first number

Loop as long as there are more numbers to add

 Add the number just entered to the running total

 Prompt the user to enter another number

Display the total

What exactly does ‘as long as there are more numbers to add’ mean? To answer this

question, we need to understand sentinels.

KEY POINT: A sentinel is a value used in a loop guard when the number of

iterations is not known before the program is run. The sentinel value is decided

upon by the programmer and used to form the condition that will terminate a loop.

The shown code below is a JavaScript implementation of the pseudo-code shown above.

The sentinel is the condition number != 0 which means that the loop runs as long as the

value in number is not equal to zero. An unknown number of numbers can be entered.

let runningTotal = 0;

let number = Number(prompt("Enter a number (0 to end):"));

while (number != 0) {

 runningTotal += number;

 number = Number(prompt("Enter a number (0 to end):"));

}

console.log("Total:", runningTotal);

The only way the loop can end is by the user entering a value of zero for number. This

would cause the condition number != 0 to evaluate to false which in turn would cause

the loop to end.

https://github.com/pdst-lccs/lccs-javascript/blob/main/ch8_iterationStatements/whileExample3A.js

JavaScript Manual for LCCS Teachers 108

Loop counters and sentinels

It is not uncommon for counters to be used in sentinel controlled loops. The main purpose of

such counters is to keep a track of the number of iterations that took place.

For example, if we wished to calculate the average of an unknown number of values – each

entered by the user – we would need to divide by the counter once all the values had been

added. This is illustrated in the program below.

let counter = 0;

let runningTotal = 0;

let number = prompt("Enter a number ('stop' to end):");

while (number != 'stop') {

 counter++; // Increment counter

 runningTotal += Number(number);

 number = prompt("Enter a number ('stop' to end):");

}

if (counter == 0) // avoid dividing by zero

 console.log("No mean value as there were no values entered");

else

 console.log("Mean value:", runningTotal/counter);

Note the use of ‘stop’ as a sentinel value i.e. the loop continues until the user enters ‘stop’.

In the above code the variable counter is initialised to zero and then incremented on every

iteration of the loop. In effect the counter is being used to record of the number of integer

values that are entered by the user. When the loop finally comes to an end the value of

counter could be any integer value greater than or equal to zero. For all positive integers

the mean value is calculated as runningTotal/counter and displayed. If counter is

zero, the user gets a message to say there is No mean value as there were no values

entered.

The general pattern for a sentinel loop can be expressed in pseudo-code as follows

prompt the user to enter the first value

while value is not the sentinel:

 process the value

 prompt the user to enter the next value

https://github.com/pdst-lccs/lccs-javascript/blob/main/ch8_iterationStatements/whileExample3B.js

JavaScript Manual for LCCS Teachers 109

Programming Exercises (choosing sentinels)

Translate the pseudo-code given in the questions below into JavaScript.

The main challenge in each question will be to choose a reliable sentinel.

1. The purpose of this program is to calculate and display the product of a variable list of

positive numbers entered by the user.

Initialise product to one

Prompt the user to enter the first number

while number is not equal to sentinel value

 calculate the product (i.e. product=product*number)

 prompt the user to enter the next number

Display the total product of all the numbers entered

2. This program repeatedly reads a positive integer from the user and displays its square

root.

prompt the user to enter the positive number

while number is not the sentinel

 root = Math.sqrt(number);

 display the root

 prompt the user to enter another positive number

3. This program selects a random number between 1 and 10 and keeps asks its user to

enter a guess until the correct number has been guessed.

generate a random number between 1 and 10

read the first guess from the user

while the random number is not the same as the guess:

 read the next guess

Suggest how the program could be modified to:

a) allow a maximum of three guesses

b) end when the user types the word ‘stop’

JavaScript Manual for LCCS Teachers 110

Example 4 (validating data)

One common use for loops and sentinels is to validate date i.e. make sure that the data

entered by a user is valid. Exactly what is meant by valid must be decided by the

development team as part of the design process. For example, if you were entering

someone’s age into a system what would the valid values be? (Any numeric value between

0 and 120 might be considered reasonable.) What about a snapchat handle or an email

address?

The general pattern is to keep prompting the user to enter the value in question until it is

valid. This pattern is shown in the following pseudo-code. The loop ensures that by the time

the last line is reached the program has a valid value to process.

prompt user to enter a value

while the value is not valid

 [display error message] // optional

 prompt user to enter a value

process value

The example below shows how to validate a yes/no type of response. The loop guaranteed

that by the time the program ends the user will have entered either Y or N. All other values

are ‘trapped’ by the loop.

// Validate a yes/no response

let response = prompt("Do you wish to continue (Y/N)");

while (response != "Y" && response != "N") {

 response = prompt("Do you wish to continue (Y/N)");

}

// response is valid

console.log("Thank you. You entered a valid response ... ");

This next example keeps looping until the user enters an integer between 1 and 12 inclusive.

It could be used to validate a month number.

// Validate a month number

let month = Number(prompt("Enter a month number (1-12)"));

while (isNaN(month) || (month < 1 || month > 12)) {

 month = Number(prompt("Enter a month number (1-12)"));

}

console.log("Thank you. You entered a valid month number ... ");

https://github.com/pdst-lccs/lccs-javascript/blob/main/ch8_iterationStatements/whileExample4A.js
https://github.com/pdst-lccs/lccs-javascript/blob/main/ch8_iterationStatements/whileExample4B.js

JavaScript Manual for LCCS Teachers 111

The do-while loop

A do-while loop is similar to a while loop, except that a do-while loop is guaranteed to

execute at least once.

The syntax of a do-while loop is:

do {

 statement(s)

} while(condition);

The use of curly braces is recommended even though technically they are needed only

when there is more than one statement in the loop body. Notice that the opening curly brace

appears directly after the do keyword and the closing curly brace appears directly before the

while keyword.

The above syntax is illustrated in the flow diagram shown below.

Notice that the loop guard condition appears at

the end of the loop body, so the statement(s) in

the loop body are guaranteed to execute once

before the condition reached.

If the loop guard condition evaluates to true,

the flow of control jumps back up to the first

statement in the loop body, for another

iteration. This process repeats until the loop

guard condition evaluates to false.

The choice between using a while and do-while can often be a matter of personal taste

to the programmer. The logic of a do-while can always be achieved with a while loop but

the reverse isn’t always the case. For this reason, the while construct is considered more

flexible and probably used more often than do-while.

JavaScript Manual for LCCS Teachers 112

The unique selling point of do-while is that the statements in a loop body are guaranteed

to be executed at least once. This is exploited in the example snippet below which validates

a yes/no response entered by the user. The loop continues as long as the response is

neither Y nor N.

// Validate a yes/no response (do-while version)

let response;

do {

 response = prompt("Do you wish to continue (Y/N)");

} while (response != "Y" && response != "N");

// response is valid

console.log("Thank you. You entered a valid response ... ");

Challenge!

Modify the two code listings below so that they use a do-while loop

instead of a while loop.

// Validate a month number

let month = Number(prompt("Enter a month number (1-12)"));

while (isNaN(month) || (month < 1 || month > 12)) {

 month = Number(prompt("Enter a month number (1-12)"));

}

console.log("Thank you. You entered a valid month number ... ");

let runningTotal = 0;

let number = Number(prompt("Enter a number (0 to end):"));

while (number != 0) {

 runningTotal += number;

 number = Number(prompt("Enter a number (0 to end):"));

}

console.log("Total:", runningTotal);

Reflection!

What is your preference – do-while or while?

https://github.com/pdst-lccs/lccs-javascript/blob/main/ch8_iterationStatements/whileExample4C.js

JavaScript Manual for LCCS Teachers 113

Programming Exercises (while loops)

1. Read each of the following code snippets carefully and predict the output that would be

generated by each of the while loops that contain. In each case you should key in and

run the code to compare your predictions with the actual output.

Loop 1 Predicted Output Actual Output

let count = 1;

while (count <= 5) {

 console.log(count);

 count++;

}

Loop 2 Predicted Output Actual Output

let count = 1;

while (count <= 5) {

 count++;

 console.log(count);

}

Loop 3 Predicted Output Actual Output

let count = 1;

while (count > 5) {

 console.log(count);

 count++;

}

Loop 4 Predicted Output Actual Output

let count = 0;

while (count < 10) {

 console.log(count);

 count += 2;

}

JavaScript Manual for LCCS Teachers 114

Loop 5 Predicted Output Actual Output

let count = 5;

while (count > 0) {

 console.log(count);

 count--;

}

Loop 6 Predicted Output Actual Output

let count = 5;

while (count > 0) {

 count--;

 console.log(count);

}

Loop 7 Predicted Output Actual Output

let count = 5;

while (count >= 0) {

 console.log(count);

 count--;

}

Loop 8 Predicted Output Actual Output

let count = 1;

while (count++ <= 5) {

 console.log(count);

}

Loop 9 Predicted Output Actual Output

let count = 1;

while (++count <= 5) {

 console.log(count);

}

JavaScript Manual for LCCS Teachers 115

2. Write a program that prompts the user to enter two integers and then displays all the

integers from the lower integer up to and including the higher. So, for example if the user

entered 3 and 7, the output generated would be 3 4 5 6 7 (with each integer being

displayed on a separate line.

An extra challenge would be to display the integers on a single line.)

3. Write programs that generate the output depicted below:

a) The addition table for 4

b) A Celsius to Fahrenheit lookup table for all Celsius values between zero and 100 in

steps of 10. The formula is 𝐹 =
9

5
𝐶 + 32.

a)

b)

4. Write a program that sums all the numbers from low to high where low and high are

two integers entered by the end-user. For example, if the end-user entered 8 and 13 the

program would compute and display the result of 8 + 9 + 10 + 11 + 12 + 13.

5. The factorial of a non-negative integer n, denoted by 𝑛!, is the product of all positive

integers less than or equal to n. For example, 5! = 5 × 4 × 3 × 2 × 1 = 120. Write a

program that prompts a user to enter a number and then computes and displays its

factorial

6. Suggest (and implement) a possible validation rule for the following data values:

a) A percentage mark b) A grade in the Leaving Certificate

c) A CAO course code d) A Twitter handle

e) An email address f) An Eircode

g) Any telephone number h) An Irish vehicle registration number

http://en.wikipedia.org/wiki/Non-negative_integer
http://en.wikipedia.org/wiki/Product_(mathematics)

JavaScript Manual for LCCS Teachers 116

The for loop

The syntax of for loops is shown below.

for(initialisation; condition; step){

 statement(s)

}

The for statement contains three

parts each separated by semi-colons

- initialisation, condition and step. The

statement(s) make up the loop body.

The semantics of for loops can be explained using the following annotated flowchart.

Let’s explain this using an example. The code below uses a for loop to display the string

Hello World three times.

for (let counter = 0; counter < 3; counter++) {

 console.log("Hello World");

}

A simple for loop The output

When the JavaScript engine runs the above code, it starts in the initialisation section (1). The

variable counter is declared and initialised to zero. The condition counter < 3 is then

evaluated (2). The first time the loop is executed this condition will evaluate to true and so

the loop body is executed (3). The loop body displays the string Hello World on the console

and processing continues at (4) where the value of counter is incremented (counter++).

After this step the condition is re-evaluated, and, based on the outcome either the

https://github.com/pdst-lccs/lccs-javascript/blob/main/ch8_iterationStatements/forLoop1A.js

JavaScript Manual for LCCS Teachers 117

statements in the loop body will be executed again or the loop will terminate in which case

the next statement to be executed will be the first statement after the loop body (5).

This description can be expressed using code as follows.

Both this, and the code snippet shown on the previous

page are logically equivalent. They both generate the

same output as shown here on the right.

// Initialisation

let counter = 0;

// Condition – 1st iteration

if (counter < 3)

 console.log("Hello World");

counter++; // step 1

// Condition – 2nd iteration

if (counter < 3)

 console.log("Hello World");

counter++; // step 2

// Condition – 3rd iteration

if (counter < 3)

 console.log("Hello World");

counter++; // step 3

// At this stage the value of counter will be 3

It is worth pointing out that the variable in the initialisation section is referred to as the loop

variable. The name of the loop variable in the above example is counter. The condition in a

for loop is typically some Boolean expression involving the loop variable. At the end of

each loop iteration the value of the loop variable is normally stepped – typically by

incrementing/decrementing it. The condition should be programmed so that it will eventually

evaluate to false at which point the loop will end.

KEY POINT: In a for loop the condition is re-evaluated every time after the step

stage. If the condition evaluates to true, the loop body is executed. If the

condition evaluates to false the loop terminates and processing continues at

the next statement that appears in the code after the end of the loop body.

https://github.com/pdst-lccs/lccs-javascript/blob/main/ch8_iterationStatements/forLoop1B.js

JavaScript Manual for LCCS Teachers 118

Examples - for loops and while loops

Another way to explain for loops is in terms of while loops. Even though the syntax of

while and for (shown below) is different, the two loops are logically equivalent.

initialisation;

while (condition) {

 statement(s)

 step

}

for(initialisation; condition; step) {

 statement(s)

}

Syntax of while loop Syntax of for loop

Each pair of code snippets in the examples below do the same thing – the while loop

implementation is shown on the left and the logically equivalent for loop implementation is

shown on the right. Study each example carefully and use the space provided to record your

notes as you do so.

Example 1 - display the integers from 1 to 10.

let count = 1;

while (count <= 10) {

 console.log(count);

 count++;

}

for (let count = 1; count <= 10; count++) {

 console.log(count);

}

Notes:

Example 2 - display the sequence 0, 2, 4, 6, ... 100

let count = 0;

while (count <= 100) {

 if (count % 2 == 0)

 console.log(count);

 count++;

}

for (let count = 0; count <= 100; count+=5) {

 if (count % 2 == 0)

 console.log(count);

}

Notes:

https://github.com/pdst-lccs/lccs-javascript/blob/main/ch8_iterationStatements/forVwhile1A.js
https://github.com/pdst-lccs/lccs-javascript/blob/main/ch8_iterationStatements/forVwhile1B.js
https://github.com/pdst-lccs/lccs-javascript/blob/main/ch8_iterationStatements/forVwhile2A.js
https://github.com/pdst-lccs/lccs-javascript/blob/main/ch8_iterationStatements/forVwhile2B.js

JavaScript Manual for LCCS Teachers 119

Example 3 - display every 5th integer between 0 and 100 and its square

let count = 0;

while (count <= 100) {

 if (count % 5 == 0)

 console.log(count,

Math.pow(count,2));

 count+=5;

}

for (let count = 0; count <= 100; count+=5) {

 if (count % 5 == 0)

 console.log(count, Math.pow(count,2));

}

Notes:

Example 4 - count the number of multiples of 3 between 0 and 100

let i=0, multiplesOf3 = 0;

while (i <= 100) {

 if (i % 3 == 0)

 multiplesOf3++;

 i++;

}

console.log(multiplesOf3,

"found");

let i, multiplesOf3;

for (i = 0, multiplesOf3 = 0; i <= 100; i++) {

 if (i % 3 == 0)

 multiplesOf3++;

}

console.log(multiplesOf3, "found");

Notes:

https://github.com/pdst-lccs/lccs-javascript/blob/main/ch8_iterationStatements/forVwhile3A.js
https://github.com/pdst-lccs/lccs-javascript/blob/main/ch8_iterationStatements/forVwhile3B.js
https://github.com/pdst-lccs/lccs-javascript/blob/main/ch8_iterationStatements/forVwhile4A.js
https://github.com/pdst-lccs/lccs-javascript/blob/main/ch8_iterationStatements/forVwhile4B.js

JavaScript Manual for LCCS Teachers 120

Example 5 - calculate 5! (i.e. 5x4x3x2x1) and then display the result

let fact = 1;

let n = 5;

let number = n;

while (number > 0) {

 fact = fact * number;

 number--;

}

console.log(n+"! =", fact);

let fact = 1;

let n = 5;

for (let number = n; number > 0; number--) {

 fact = fact * number;

}

console.log(n+"! =", fact);

Notes:

Infinite Loops

If the loop guard always returns true, the loop body will continue to be executed forever.

Such loops are called infinite loops. There are occasions when programmers deliberately

program their loops to run forever. However, when they are not programmed intentionally

infinite loops cause a running program to ‘hang’ (which is a major inconvenience for the end-

user). When writing loops programmers should take care to safeguard against unintentional

infinite loops. In most cases the loop body should have some statement that will eventually

render the loop guard false thereby causing the loop to terminate.

count = 0

while (count <= 10) {

 console.log("Infinite Loop");

}

for (; ;) {

 console.log("Infinite Loop");

}

Two example infinite loops. The loop guard condition never becomes false

KEY POINT: An infinite loop is one that never ends. They occur in code where

the loop guard condition always evaluates to true.

https://github.com/pdst-lccs/lccs-javascript/blob/main/ch8_iterationStatements/forVwhile5B.js
https://github.com/pdst-lccs/lccs-javascript/blob/main/ch8_iterationStatements/forVwhile5A.js

JavaScript Manual for LCCS Teachers 121

Programming Exercises (for loops)

1. Read each of the following code snippets carefully and predict the output that would be

generated by each of the for loops shown. In each case you should key in and run the

code and then compare your predictions with the actual output.

Loop 1
Predicted

Output
Actual
Output

for (let count = 0; count <= 5; count++) {

 console.log(count);

}

Loop 2
Predicted

Output
Actual
Output

for (let count = 1; count < 5; count++) {

 console.log(count);

}

Loop 3
Predicted

Output
Actual
Output

for (let count = 0; count <= 100; count+=10) {

 console.log(count);

}

Loop 4
Predicted

Output
Actual
Output

for (let count = 5; count > 0; count--) {

 console.log(count);

}

Loop 5
Predicted

Output
Actual
Output

for (let count = 10; count >= 0;) {

 console.log(count);

 count -= 2;

}

JavaScript Manual for LCCS Teachers 122

2. Compare the two programs below in terms of what they do and how they do it

a) Use the space provided to record the output that would be displayed by each program if

the user entered a value of 3 for start and 7 for end

let start = Number(prompt("Enter a number to start from"));

let end = Number(prompt("Enter a number to end at"));

for (; start <= end; start++) {

 console.log(start);

}

OUTPUT for 3 and 7

b) Why does the above for loop not have any initialisation expression?

c) Can you suggest an initialisation expression to use in the for loop?

d) Experiment! Can the same logic be achieved without start++ in the for loop?

let start = Number(prompt("Enter a number to start from"));

let end = Number(prompt("Enter a number to end at"));

let outStr = "";

while (start <= end) {

 outStr = outStr + start + ", ";

 start++;

}

console.log(outStr);

OUTPUT (for 3 and 7) :

e) What is the purpose of the variable outStr in the above program?

f) Modify the program so that there is no trailing comma displayed at the end of the output

(i.e. commas should only appear between the values displayed).

JavaScript Manual for LCCS Teachers 123

The break and continue statements

We now turn our attention to two keywords that relate to loops - break and continue.

break

A break statement can only be used inside any loop or switch statement. When it is

executed it forces the loop or switch statement in which it is used to stop. Processing is

transferred to the first line after the end of the loop or switch.

The following example illustrates the use of break. The output is shown to the right.

let someValue = 7;

while (someValue > 0) {

 someValue--; // decrement

 if (someValue == 3)

 break;

 console.log(someValue);

}

6

5

4

Program Output

The most common use for break is to exit a switch statements once a case has been

processed. The break statement is also used by experienced programmers as a means to

exit from loops that are guarded by conditions that always evaluate to true (i.e. infinite loops).

continue

The continue statement can only be used inside any of the loop structures. It causes the

loop to skip one iteration by immediately jumping to the next iteration of the loop. The flow of

control is altered as follows:

 in while and do-while loops, the continue statement causes the flow of control to

jump immediately to the loop guard condition

 in a for loop, the flow of control immediately jumps to the step expression (i.e. the third

part of the for statement)

The following example illustrates the use of continue. The output is shown to the right.

let someValue = 6;

while (someValue > 0) {

 someValue--; // decrement

 if (someValue == 3)

 continue;

 console.log(someValue);

}

5

4

2

1

0

https://github.com/pdst-lccs/lccs-javascript/blob/main/ch8_iterationStatements/break.js
https://github.com/pdst-lccs/lccs-javascript/blob/main/ch8_iterationStatements/continue.js

JavaScript Manual for LCCS Teachers 124

Nested loops

A nested loop is a loop inside another loop.

The example shown below contains two for loops. The first for loop is called the outer loop

and the second for loop is referred to as the inner or nested loop. The inner loop is nested

inside the outer loop.

for (let row = 1; row<5; row++) {

 for (let col = 1; col<=3; col++) {

 console.log(row, col);

 }

}

In this example, the outer loop is executed 4 times. As is the case

with all loops, the loop body is repeatedly executed. In this case

the loop body happens to be another loop – the inner loop. The

inner loop does 3 iterations – its loop body displays the loop

variables for both loops on the console i.e. row and col. The

output is shown here to the right.

As can be see the value of row is displayed before the value of

col. The outer loop variable moves slower than the inner loop

variable. Between the two loops there are a total of 15 iterations.

The reason that programmers use nested loops are no different to those for using any other

loop i.e. to repeat a block of code. The block of code to be repeated just happens to be a

loop.

Take for example the for loop shown here which display the 7 times tables.

for (let count=0; count<=12; count++) {

 console.log("7 x", count, "=", 7*count);

}

https://github.com/pdst-lccs/lccs-javascript/blob/main/ch8_iterationStatements/nested1.js
https://github.com/pdst-lccs/lccs-javascript/blob/main/ch8_iterationStatements/nested2.js

JavaScript Manual for LCCS Teachers 125

As can be seen, the code loops through all the integers from 0 to 12 multiplying each by 7 as

it does so.

Now let’s say we wanted to display all the multiplication tables from 1 up to 10 (and not just

the 7 times tables). The way to do this would be with a nested loop.

We take our ‘7 times’ loop and wrap it inside another loop that iterates 10 times. Of course

we don’t want to display the 7 times tables 10 times so we use a variable called tables to

indicate which ‘times tables’ are to be displayed. The solution is as follows.

for (let tables=1; tables<=10; tables++) {

 for (let count=0; count<=12; count++) {

 console.log(tables,"x", count, "=", tables*count);

 } // inner loop

 console.log("\n\n");

} // outer loop

The outer loop iterates through the tables from 1 to 10 and the inner loop iterates through

the values from 1 to 12 for each table. In effect we are wrapping the code to display a single

multiplication table inside a loop that steps through ten tables.

Nested loops are commonly used for iterating over two dimensional (2D) arrays (i.e. the

inner loop does the horizontal processing and the outer or slower loop does the vertical

processing). 2D arrays are a data structure used to represent any data that can be

organised into rows and columns e.g. matrices, battleship, chessboard, Sudoku etc.). They

are used in the implementation of many board games.

https://github.com/pdst-lccs/lccs-javascript/blob/main/ch8_iterationStatements/nested3.js

JavaScript Manual for LCCS Teachers 126

A nested loop can also contain a loop – in this case we would have a loop within a loop

within a loop (e.g. loop 3 inside loop 2 which is inside loop1, the outer loop). In theory, loops

can be nested to any depth - the example below contains four levels of nesting. This

example is a little extreme –in practice two levels of nesting is most common.

Example

The following program is an advanced illustration of the use of nested loops to find and

display all the 4 digit happy numbers. A number is said to be a ‘happy’ if the sum of the first

two digits is the same as the sum of the last two digits. Examples of happy numbers are

1111, 5005 and 8439 - can you think of others?

// Happy numbers e.g. 8439 because 8+4 == 3+9

for (let a = 0; a<10; a++)

 for (let b = 0; b<10; b++)

 for (let c = 0; c<10; c++)

 for (let d = 0; d<10; d++)

 if (a+b == c+d)

 console.log("Happy Number:", a, b, c, d);

https://github.com/pdst-lccs/lccs-javascript/blob/main/ch8_iterationStatements/nested4.js

JavaScript Manual for LCCS Teachers 127

Exercise (Example of a parson’s problem)

Move the three lines given on the right hand side into the correct places (A, B, and C) to the

code block shown so that it will display the factorial of the first five natural numbers.

Hint: The code shown below calculates and displays 6!

let factorial = 1;

for (let number = 6; number > 0; number--) {

 factorial = factorial * number;

} // end for

console.log(6, "! =", factorial);

Swimming involves repetitive actions.

Explain how the concept of nested loops could be used to direct a ‘bot’ to

swim 10 lengths of a pool.

https://github.com/pdst-lccs/lccs-javascript/blob/main/ch8_iterationStatements/factorial6.js

JavaScript Manual for LCCS Teachers 128

Programming Exercises - Loops

1. Write a JavaScript loop that displays the integers from 1 up to 10 inclusive.

2. Write a JavaScript loop that displays the integers from 10 to 20 inclusive.

3. Write a JavaScript loop that displays the integers from 10 down to 1 inclusive.

4. Write a loop that displays every 10th integer between zero and 100 inclusive i.e. 0, 10,

20, 30 etc.

5. Write a JavaScript loop that calculates the sum of the first 𝑛 natural numbers.

6. The reciprocal of a number 𝑥 is denoted by
1

𝑥
. For example, the reciprocal of 5 is

1

5
. Write

a program to calculate and display the sum of the reciprocals of the first 10 natural

numbers i.e.

1

1
+

1

2
+

1

3
+

1

4
+

1

5
+

1

6
+

1

7
+

1

8
+

1

9
+

1

10

7. Write a program that generates two random numbers (between 1 and 10) and displays

their sum. Extend the program so that it does the this three times.

8. Write a program that generates two random numbers (say between 1 and 10) and asks

the user to enter their sum. The program should continue until the user enters the correct

answer.

9. Write a program to iterate over all the numbers between 1 and 100. Every time it comes

across a multiple of 5 it prints ‘fizz’, for every multiple of 10 it prints ‘buzz’, and for every

other number it just prints the number.

10. Write a program that repeatedly prompts a user to enter a number. If the user enters an

even number the program should display Even; otherwise, the program should display

the message Odd. The program should end when the user enters the word ‘stop’.

JavaScript Manual for LCCS Teachers 129

11. Write a program that keeps a count of the number of even numbers entered by a user

until the word ‘stop’ is entered.

12. Write a program that simulates the rolling of a die (Hint: use a random number between

1 and 6.) The program should continue until a six is ‘rolled’. The program should display

the number of rolls it took to return a 6.

13. Extend the previous program to count the number of throws it takes to get ‘snake eyes’

Snake eyes mean two ones in a row with one die or double ones if using two dice.

Implement with one die first i.e. a single roll at a time. Then two.

14. A Fibonacci sequence is a sequence of numbers where each successive number is the

sum of the previous two. Thus, the first 7 numbers in the Fibonacci sequence are 1, 1, 2,

3, 5, 8, 13. Write a program to that computes the nth Fibonacci number. For example, if

the user entered 6, the program would output 8 (as 8 is the 6th Fibonacci number)

15. The CAO awards points to students based on their achievements in the Leaving

Certificate examination. The table below illustrates the mapping from student marks to

CAO points for higher and ordinary level. counting their best six subjects only.

% Bands Higher Ordinary

90 – 100 H1 100 O1 56

80 – 89 H2 88 O2 46

70 – 79 H3 77 O3 37

60 – 69 H4 66 O4 28

50 – 59 H5 56 O5 20

40 – 49 H6 46 O6 12

30 – 39 H7 37 O7 0

0 – 29 H8 0 O8 0

Write a program that asks a user to enter six results. For each result enter a code (‘H’ to

indicate the result is higher level; ‘O’ for ordinary level) followed by the actual

percentage. The program should then determine the relevant points for the percentage

entered and keep a running total of the points to date. Once the last result has been

entered the program should display the points total accumulated. (Bonus points and six

best subjects are ignored.)

http://en.wikipedia.org/wiki/Irish_Leaving_Certificate
http://en.wikipedia.org/wiki/Irish_Leaving_Certificate

JavaScript Manual for LCCS Teachers 130

Reflect on all the exercises in this section.

Suggest how you could adapt any of the exercises for use in your own LCCS

classroom.

JavaScript Manual for LCCS Teachers 131

9. Strings
Recall that a string is any sequence of characters enclosed in quotation marks. (The

quotations can be single or double but must be consistent.)

Strings are very flexible datatypes. They can be used to represent anything from a person’s

name, or phone number to large amounts of text such as the contents a web page, a

newsfeed or even a manual such as this.

The table below contains some example string literals along with a brief description of each.

Example string literal Brief description

"11 The Laurels, Dublin 24"
Strings can contain a mix of letters and numbers (and
any Unicode character)

"0861234567" A string can be made up of entirely of digits

"+353-(0)86-1234567" An international phone number

"970-0-393-63499" A string used to store an ISBN

"https://glitch.com/edit/#!/pdst-
wkshp-day2?path=string.js:8:0"

A string used to store a URL

‘Game of Thrones’
Strings can be delimited inside single quotes (as well
as double quotes

‘St. Patrick\’s Day, March 17’
The single quote at the end of Patrick’s needs to be
escaped. Otherwise, JavaScript would see this as the
closing quote to mark the end of the string.

"St. Patrick’s Day, March 17"
The escape sequence is not needed here because
the string is enclosed inside double quotes.

"A string can span \

multiple lines of JS code \

using the \\ character!"

Strings can span several lines of a JavaScript
program. This string resolves to:
A string can span multiple lines of JS code using the \ character!

"A string can span \n multiple

lines \n using the \\n character!"

Strings can also contain multiple line. This string
resolves to:
A string can span
 multiple lines
 using the \n character!

https://glitch.com/edit/#!/pdst-wkshp-day2?path=string.js:8:0
https://glitch.com/edit/#!/pdst-wkshp-day2?path=string.js:8:0

JavaScript Manual for LCCS Teachers 132

String indexing

Individual characters can be accessed using an index (in the same way as an index is used

to access the elements of an array). The index of the first character in every string is zero

and the index of the last character in a string of length 𝑛 is 𝑛 − 1.

Let’s consider the string s declared and initialised as follows:

let s = "Hello World!";

The diagram below depicts s with the index of every character displayed underneath.

Every character in a string can be identified by a position known as an index.

From the diagram it should be evident the expression s[0] would return the string "H";

s[1] would return "e" and so on until s[11] which would return the string "!". Note that

negative indices are not supported and a value of undefined is returned if the index used

is out of range.

Furthermore, it should be noted that strings in JavaScript are read-only. This means that

once a JavaScript string has been created its value cannot be changed.

Let’s say we wanted to change the string s from Hello World! to Howdy World! – we might

proceed as follows:

s[1] = "o";

s[2] = "w";

s[3] = "d";

s[4] = "y";

console.log(s); // Hello World!

Even though the code doesn’t result in any errors it doesn’t work and the string s will remain

unchanged.

KEY POINT: Individual string elements can be accessed using the index operation

but they cannot be changed (because strings are immutable).

https://github.com/pdst-lccs/lccs-javascript/blob/main/ch9_strings/string1.js

JavaScript Manual for LCCS Teachers 133

Primitive Strings vs. Strings as Objects

JavaScript strings can be created either as primitive strings or as objects. The code below

demonstrates different ways strings can be created.

let s1 = "Joe";

let s2 = "Joe";

let s3 = s2;

let s4 = new String("Joe");

let s5 = new String("Joe");

let s6 = s5;

In the above code the variables s1, s2 and s3 are all primitive strings. Their datatype is

string. Primitive strings are created simply by assigning a string literal to a variable. They

can also be created by assigning another (pre-existing) string to a variable (as in the case of

s3 above)

Variables s4, s5 and s6 are all of type object. The strings s4 and s5 are both created

explicitly as objects by applying the new operator to String which is a built-in JavaScript

object. (Using the terminology of other object-oriented languages such as C++ and Java,

String can be thought of as a constructor/wrapper for the static/global class String.). s6

is simply a reference to the string s5.

The diagram below provides a visual of how above variables might be represented in

memory following their declaration. (The actual representation will depend on the

implementation of JavaScript and therefore may vary from browser to browser.)

s1, s2, s3 are all identical – their

value is the string Joe.

s4 and s5 are two separate string

objects.

s5 and s6 both refer to the same

string object.

https://github.com/pdst-lccs/lccs-javascript/blob/main/ch9_strings/string2.js

JavaScript Manual for LCCS Teachers 134

On the previous page we learned that JavaScript strings can be created either as primitive

strings or as objects. One important feature of JavaScript strings however, is that

regardless of how they are created, all strings behave as objects.

This means that the methods and properties defined for built-in string objects can also be

used by string primitives.

For example, let’s say we had a primitive string s1 declared as shown in the code below.

Because s1 can also be treated as an object we can access its length property as

demonstrated in the code.

let s1 = "A quick brown fox";

let len = s1.length;

console.log("The length of s1 is", len);

console.log("The last character of s1 is", s1[len-1]);

The code results in the following output being displayed on the console.

Similarly, we can call any string method on any string primitive. The name of one such

method is includes. (We will look at more string methods soon.)

The includes method returns true if some specified string is included within a string;

false otherwise. If s1 is a primitive string with the value A quick brown fox we can write:

s1.includes("fox") true because fox is included as part of s1

s1.includes("dog") false because dog is not included as part of s1

Each time a method is called on a primitive string the JavaScript engine converts the string

to an object internally. The method is then invoked on this internal string object (and upon

completion the internal object ceases to exist).

https://github.com/pdst-lccs/lccs-javascript/blob/main/ch9_strings/string3.js

JavaScript Manual for LCCS Teachers 135

Comparing Strings: Literals vs. Object References

The fact that all strings behave as objects can be a source of confusion especially when it

comes to comparing them.

Two strings can be compared for equality using the equality operator (==) or the strict

equality operator (===). Tests for equality always return either true or false.

Care needs to be taken to understand the difference between comparing string literals and

string objects. Take for example the following – the output is shown as comments.

let s1 = "Joe";

let s2 = "Joe";

let s3 = s2;

let s4 = new String("Joe");

let s5 = new String("Joe");

let s6 = s5;

console.log(s1 == s2); // true

console.log(s1 == s3); // true

console.log(s1 == s4); // true

console.log(s4 == s5); // false

console.log(s5 == s6); // true

console.log(s1 === s2); // true

console.log(s1 === s3); // true

console.log(s1 === s4); // false

console.log(s4 === s5); // false

console.log(s5 === s6); // true

Note s1 and s4 are equal because they both contain the same value. However, the test for

strict equality returns false because the underlying datatypes of both variables are

different. The datatype of s1 is string and the datatype of s4 is object.

Use the space below to reflect on other results of the comparisons in the

above code. For example, why does s4 === s5 yield false and yet

s5 === s6 return true?

https://github.com/pdst-lccs/lccs-javascript/blob/main/ch9_strings/string4.js

JavaScript Manual for LCCS Teachers 136

Strings can also be compared for inequality by using not-equal-to, less-than and greater than

operators. The table illustrates the results of some such string comparisons.

Test (comparison) Result Comment

"apple" < "banana" true The letter ‘a’ comes before ‘b’. The string “apple” is therefore

less than the string “banana” and the test returns true.

"apple" > "banana" false The string “apple” is not greater than the string “banana”

"apple" < "aardvark" false Since the first letter in both strings is the same (i.e. ‘a’) the

test continues from the second letter

"apple" > "apple tart" false Both strings are identical up to the ‘e’. The second strings is

longer than the first and is therefore considered greater.

"Apple" != "apple" true Since the strings are not identical the test for inequality

returns true

"Apple" > "apple" false The code for upper case ‘A’ is less than lower case ‘a’.

"Zebra" <= "giraffe" true The Unicode values for all upper case letters are less than

the Unicode values for the corresponding lower case letters.

The comparison operations work by comparing the strings on a character-by-character basis

in what is called lexicographical order.

Experiment!

Use the code below to investigate the method localeCompare

(Reference: https://www.w3schools.com/jsref/jsref_localecompare.asp)

let apple = "apple";

let banana = "banana";

console.log(apple.localeCompare(banana));

console.log(banana.localeCompare(apple));

console.log(banana.localeCompare(banana));

Describe what the method does, how to call it and what its return values are.

https://www.w3schools.com/jsref/jsref_localecompare.asp
https://github.com/pdst-lccs/lccs-javascript/blob/main/ch9_strings/string5.js

JavaScript Manual for LCCS Teachers 137

String Methods

Because JavaScript automatically treats primitive strings in the same way as if they were

String objects, it is possible to call any String object method on a string primitive.

This is illustrated in the program below which demonstrates the use of a selection of string

object methods being applied to two primitive strings – pangram and toungeTwister.

// Declare two strings to work with

let pangram = "Pack my box with five dozen liquor jugs";

let toungeTwister = "Sally sells seashells by the sea shore";

// charAt and charCodeAt

console.log("The Unicode representation for", pangram.charAt(), "is", pangram.charCodeAt());

console.log("The Unicode representation for", pangram.charAt(1), "is", pangram.charCodeAt(1));

// toUpperCase, toLowerCase and concat

console.log("toUpperCase:", pangram.toUpperCase());

console.log("toLowerCase:", pangram.toLowerCase());

// concat

let lowerCaseStr = toungeTwister.toLowerCase();

let upperCaseStr = toungeTwister.toUpperCase();

console.log(lowerCaseStr.concat(upperCaseStr));

// indexOf

let index = toungeTwister.indexOf("ells");

console.log("indexOf first \'ells\' is:", index);

console.log("indexOf of next \'ells\' is:", toungeTwister.indexOf("ells", index+1));

// lastIndexOf

let lastIndex = toungeTwister.lastIndexOf("ells");

console.log("lastIndexOf \'ells\' is:", lastIndex);

console.log("2nd lastIndexOf of \'ells\' is:", toungeTwister.lastIndexOf("ells",lastIndex-1));

// slice

console.log("slice 1:", pangram.slice(5));

console.log("slice 2:", pangram.slice(5, 11));

// replace

console.log("replace 1:", pangram.replace("box", "bag"));

console.log("replace 2:", toungeTwister.replace("sells", "sold"));

// split

console.log("split 1:", pangram.split());

console.log("split 2:", toungeTwister.split(" "));

The output generated by this program is shown on the next page.

KEY POINT: All JavaScript strings behave as objects.

https://github.com/pdst-lccs/lccs-javascript/blob/main/ch9_strings/stringMethods.js

JavaScript Manual for LCCS Teachers 138

It should be noted that while certain methods e.g. concat, toLowerCase, toUpperCase,

trim etc. appear to change the value of the string on which they act, this is in fact not the

case. What actually happens is that such methods actually create and return a new string

leaving the original string unchanged. Of course, the reason for this is because strings are

immutable.

A brief description of each of the methods used in this example is provided on the next page.

Use the space below to record your understanding of string methods

JavaScript Manual for LCCS Teachers 139

Method name Description

strA.concat(strB)
Returns a new string made up of the characters of strA

followed by the characters of strB.

str.charAt(index)
Returns a new string made up of the character at the specified

index in str (or an empty string if index is out of bounds)

str.charCodeAt(index)
Returns the Unicode code of the character at the specified index

in str (or NaN if index is out of bounds)

str.toUpperCase()
Returns a new string with all the characters of str converted to

upper case

str.toLowerCase()
Returns a new string with all the characters of str converted to

lower case

str.indexOf(item

[,fromIndex])

Returns the index of the first occurrence of the value specified

by item in str. Unless fromIndex is specified the search

starts at index zero. If item is not found the method returns -1

str.lastIndexOf(item

[,fromIndex])

Starting from the end (or at fromIndex) and working

backwards, this method returns the index of the first occurrence

of the value specified by item in str. If item is not found the

method returns -1

str.slice([i1, [i2])

Returns a new string made up of the characters of str from i1

up to but not including i2. If i1 is not specified it is taken to be

zero; if i2 is not specified it is taken to be str.length. The

contents of the original string are unchanged.

str.replace(old, new) Replaces all occurrences of old in str with new.

str.split([separator]) Returns an array of strings split at the point denoted by the

separator

str.trim()

Creates a new string based on str with leading and trailing

whitespaces removed. Note trimStart() removes only

leading whitespaces and trimEnd() removes only trailing

whitespaces

Browse to https://www.w3schools.com/jsref/jsref_obj_string.asp for a more complete

reference to the JavaScript String object.

https://www.w3schools.com/jsref/jsref_obj_string.asp

JavaScript Manual for LCCS Teachers 140

Traversing Strings

Example 1. The following program counts and displays the number of vowels in a string

entered by the user. The program uses a for loop to traverse every character in the string.

This operation is called string traversal.

let inString = prompt("Enter a string:");

let vowels = 0;

let ch;

for(let i = 0; i < inString.length; i ++) {

 // Extract the next character (from position i) ...

 // ... and convert it to upper case

 ch = inString.charAt(i).toUpperCase();

 if (ch == 'A' || ch == 'E' || ch == 'I' || ch == 'O' || ch == 'U')

 vowels ++;

}

console.log("The number of vowels found was", vowels);

Key in the program, try it out and answer the following questions

What is the purpose of the for loop?

Why is the method toUpperCase used?

Without using the method charAt what other technique could have been used to access the

individual characters of inString?

Challenges!

Based on the above, write programs to ….

 count and display the number of non-vowel characters in a string

 count and display the number of consonants characters in a string

 count and display the number of upper-case characters in a string

 count and display the number of words in a string

 calculate and display the average word length of the words in a string

https://github.com/pdst-lccs/lccs-javascript/blob/main/ch9_strings/stringTraversal1.js

JavaScript Manual for LCCS Teachers 141

Example 2. The following program prompts the user to enter a string and then displays the

string in reverse order. Each character is displayed on a separate line.

let str = prompt("Enter a string:");

for(let i = str.length-1; i >= 0; i--)

{

 console.log(str[i]);

}

If the user entered Joe the output would be:

e

o

J

Compare the for loop in this program to the for loop in the example on the

previous page.

Look at the initial value for i in both programs. What’s the difference?

Look at the loop guard (the terminating condition) in both programs. What’s the difference?

Explain why the loop step is i-- in this program but i++ in the previous example?

Explain the purpose of the variable outStr in the code below. What does the program do?

let inStr = prompt("Enter a string:");

let outStr = "";

for(let i = inStr.length-1; i >= 0; i--) {

 outStr += inStr[i];

}

console.log(outStr);

https://github.com/pdst-lccs/lccs-javascript/blob/main/ch9_strings/stringTraversal2A.js
https://github.com/pdst-lccs/lccs-javascript/blob/main/ch9_strings/stringTraversal2B.js

JavaScript Manual for LCCS Teachers 142

Example 3. This example program prompts the user to enter a string and then displays a

message stating whether the string is a palindrome or not.

A palindrome is a word or phrase that read the same in both directions. Examples of single

word palindromes are NAVAN, MADAM, RACECAR and EYE.

let s = prompt("Enter a string:");

let isPalindrom = true;

// Traverse the string comparing each char

for (let i=0, j = s.length-1; i < s.length; i++, j--) {

 if (s[i] != s[j]) {

 isPalindrom = false;

 break;

 }

}

// Display the result

if (isPalindrom)

 console.log(s, "is a palindrome!");

else

 console.log(s, "is not a palindrome!");

Key in the program, try it out and answer the following questions

Explain how the program works?

What is the purpose of the variable isPalindrome? If the initial value of this variable was set to

false (on line 2) what changes would need to be made to maintain the correctness of the program?

Does the program work for every palindrome? Test it with the following and identify any issues.
Navan? RACEcar? MADAM I’M ADAM? DON’T NOD? never odd or even? Murder for a jar of red rum?

Can you design and develop ‘fixes’ to any of the ‘bugs’ you identified?

https://github.com/pdst-lccs/lccs-javascript/blob/main/ch9_strings/stringTraversal3.js

JavaScript Manual for LCCS Teachers 143

Programming Exercises - Strings

1. State whether a string would be appropriate for the following types of data:

a) The eircode of your school

b) Your date of birth

c) The price of a product

d) A product code

e) A PPSN

f) Your most recent social media post

2. Write a program that prompts a user to input their first name (e.g. Joe) followed by their

surname (e.g. Blogs) and then print a message along the lines:

Hello Joe Blogs. Welcome to my crazy world!

3. Answer the following questions in relation to the string JavaScript

a) What is the length of the string?

b) Which character occurs at the zeroth index position?

c) What character occurs at index position four?

d) At what index position does the character ‘t’ occur?

e) What would be an appropriate variable name be to store this string?

4. What output does the following program display?

let uprCaseLetters = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"

let lwrCaseLetters = "abcdefghijklmnopqrstuvwxyz"

let letters = uprCaseLetters+lwrCaseLetters

console.log(uprCaseLetters.toLowerCase());

console.log(lwrCaseLetters.toLowerCase());

console.log(uprCaseLetters.slice(0,5));

console.log(uprCaseLetters.slice(20));

console.log(lwrCaseLetters.slice(1,6));

console.log(letters.slice(26,52));

console.log(letters.indexOf("a"));

console.log(letters.lastIndexOf("A"));

console.log(letters.replace("abc", "123"));

console.log(uprCaseLetters == lwrCaseLetters);

console.log(uprCaseLetters == lwrCaseLetters.toUpperCase());

https://github.com/pdst-lccs/lccs-javascript/blob/main/ch9_strings/stringExercise4.js

JavaScript Manual for LCCS Teachers 144

5. Write a small program to extract (slice) the following strings from the string:

The quick brown fox jumps over the lazy dog

a) “quick”

b) “fox”

c) “The”

d) “The quick brown fox”

e) “jumps over the lazy dog”

6. Write a program that asks a user to input their first name (e.g. Arnold) followed by their

surname (e.g. Schwarzenegger) and then outputs the initial of the forename followed by

the first seven characters of the surname (e.g. ASchwarz).

Test your program using Joe Blogs as the name.

7. An acronym is a series of letters used as an abbreviation for some phrase or name. It is

usually formed by combining the initial letter of each word in the phrase name. Examples

include TLA (Three Letter Acronym), IBM (International Business Machines) and LOL

(Laugh Out Loud). Write a program that generates an acronym from a phrase entered by

the end-user.

8. Write a program that encodes English language sentences into ‘Pigs Latin’. Many

variations of ‘Pigs Latin’ exist – attempt to implement the following two:

a) Insert ‘eg’ at the end of every vowel in every word of the sentence so that an input of

‘She sat under the table’ would become ‘Sheeg saegt uegndeegr theeg taegble’

b) Move the first letter of every word in the input sentence to the end of that word and

the add on ‘ay’. In this way an input of ‘He switched on the computer’ would become

‘ehay witchedsay noay hetay omputercay’

JavaScript Manual for LCCS Teachers 145

Reflect on all the exercises in this section.

Suggest how you could adapt any of the exercises for use in your own LCCS

classroom.

JavaScript Manual for LCCS Teachers 146

10. Arrays
An array is a collection of zero or more values that can be accessed using a single variable.

Each individual value in an array is called an element and each element exists at a particular

position known as an index. An array index is a zero-based positional offset that can be used

to address the individual elements of an array.

KEY POINT: Arrays are JavaScript objects. As such they have associated

properties (e.g. length) and methods (e.g. concat).

Arrays are useful because they provide us with a means of grouping multiple values into a

single variable. Without arrays we would need a separate variable for each value.

Let’s say we wanted to store the ages of six students. We could use six variables (e.g.

age1, age2 etc.) or we could simply declare an array called ages as follows:

let ages = [18, 16, 18, 17, 19, 17];

This tells the JavaScript engine to allocate space for six integers and store them together

under the name ages. The memory representation for ages is depicted below. Notice that

the index of each element is shown directly below the element itself.

An array object called ages with six elements

Individual elements of an array can be

referenced using the array name followed

immediately by an index enclosed in square

brackets.

For example, ages[0] refers to the first

element of the array, ages[1] the second

and so on. The last element of our example

array is referenced using ages[5].

This is depicted here to the right.

JavaScript Manual for LCCS Teachers 147

While it is both important and necessary to understand the syntax for creating and

manipulating arrays the real art of programming involves recognising situations that require

the use of arrays in a program.

Take for example the following program which simulates one million dice rolls and keeps

count of the number of times each side of a die appears.

// This sample program motivates a use for arrays

// Let's say we wanted to count the number of times each side of a dice is rolled

// The program uses six separate variables to store the counts ...

// ... 'ones' stores the number of times 1 is rolled, ...

// ... 'twos' stores the number of times 2 is rolled etc.

// These variables are declared and initialised as follows

let ones = 0, twos = 0, threes = 0, fours = 0, fives = 0, sixes = 0;

// Simulate a million rolls

for (let i = 1; i <= 1000000; i++) {

 // Generate a random number between 1 and 6

 let roll = Math.floor(Math.random() * 6) + 1

 if (roll == 1)

 ones++;

 else if (roll == 2)

 twos++;

 else if (roll == 3)

 threes++;

 else if (roll == 4)

 fours++;

 else if (roll == 5)

 fives++;

 else if (roll == 6)

 sixes++;

} // end for

// Display the frequencies on the console

console.log("Ones:\t%d", ones);

console.log("Twos:\t%d", twos);

console.log("Threes:\t%d", threes);

console.log("Fours:\t%d", fours);

console.log("Fives:\t%d", fives);

console.log("Sixes:\t%d", sixes);

The program simulates a roll by generating a random number between 1 and 6 and repeats

this process a million times.

A separate variable is used to keep track of each side of the die i.e. ones stores the number

of times a 1 is rolled, twos stores the number of times a 2 is rolled and so on.

https://github.com/pdst-lccs/lccs-javascript/blob/main/ch10_arrays/array1.js

JavaScript Manual for LCCS Teachers 148

The solution is considered to be awkward because of the number of variables needed.

(Imagine we wanted to track how often each number ‘came up’ in the National Lottery. We

would need 47 separate variables!)

A better solution would be to use arrays as shown in the following listing.

// Declare an array called 'counts'

let counts = [0,0,0,0,0,0,0];

let roll;

for (let i = 1; i <= 1000000; i++) {

 // Generate a random number between 1 and 6

 roll = Math.floor(Math.random() * 6) + 1;

 counts[roll]++; // <-- This is the MAGIC!!

} // end for

// Display the output

console.log("Face\tFrequency\n");

for (let i = 1; i <= 6; i++)

 console.log("%d\t%d\n", i, counts[i]);

Code Sample Output

KEY POINT: Arrays are the data structure of choice to represent groups of related

values in a single variable.

In this example the array counts is used to store a list of frequencies. Arrays could also be

used to store lists of other types of numbers (e.g. ages, salaries, sales figures, heights etc.),

or names, phone numbers, books, days of the week, months of the year, dates and so on.

Virtually any group of objects you can think of can be represented using arrays.

List five ‘real world things’ that could be represented using arrays.

(e.g. can you think of any list of items stored on your phone, or in a game?)

1.

2.

3.

4.

5.

https://github.com/pdst-lccs/lccs-javascript/blob/main/ch10_arrays/array2.js

JavaScript Manual for LCCS Teachers 149

Example Program – A Sentence Generator

The Python program shown below makes use of four different arrays - article, noun,

verb and preposition – to generate a random sentence.

The sentence is created by selecting a word at random from each array in the order:

article, noun, verb, preposition, article, noun.

The program concatenates the words (separated by spaces) to form the final sentence.

import random

articles = ['the', 'a', 'one', 'some', 'any']

nouns = ['boy', 'girl', 'dog', 'town', 'car']

verbs = ['drove', 'jumped', 'ran', 'walked', 'skipped']

prepositions = ['to', 'from', 'over', 'under', 'on']

sizeOfLists = len(articles)-1

wordIndex = random.randint(0, sizeOfLists)

word1 = articles[wordIndex]

wordIndex = random.randint(0, sizeOfLists)

word2 = nouns[wordIndex]

wordIndex = random.randint(0, sizeOfLists)

word3 = verbs[wordIndex]

wordIndex = random.randint(0, sizeOfLists)

word4 = prepositions[wordIndex]

wordIndex = random.randint(0, sizeOfLists)

word5 = articles[wordIndex]

wordIndex = random.randint(0, sizeOfLists)

word6 = nouns[wordIndex]

sentence = word1+' '+word2+' '+word3+' '+word4+' '+word5+' '+word6

print(sentence)

Sample output (sometimes the sentences generated make no sense!)

 a dog ran under a girl

 any car ran to some boy

 a town ran under any town

 some dog jumped on a car

Challenge!

Translate the above Python program to JavaScript.

.

https://github.com/pdst-lccs/lccs-javascript/blob/main/ch10_arrays/sillySentence.py

JavaScript Manual for LCCS Teachers 150

Changing the contents of an array

Arrays are both mutable and dynamic – this means that existing elements can be changed

and new elements can be added. Array elements can also be destroyed using the delete

operator. Consider the example shown:

let items = ["Bread", "Milk", "Tea"];

items[0] = "Sliced Pan"; // modify an element

delete items[2]; // delete an element

items[3] = "Butter"; // add a new element

items[4] = "Jam"; // add another new element

console.log(items); // display the array contents

When the above code is run the following output is displayed on the console:

Notes:

 The first element of items has been changed from Bread to Sliced Pan

 The third element (i.e. element at index position 2) has been removed from the array.

 Two new elements have been added to the end of the items array (Butter and Jam)

 The original array had a length of 3. After the code has been run the length of the array

is 5.

When an element is deleted from an array the array size does not change. Rather the value

is simply removed from the array but the ‘slot’ is still part of the array. In the above example

the value Tea is removed from items – memory for items[2] is cleared but remains

allocated. Arrays such as this that contain empty slots are called sparse arrays.

KEY POINT: The length of any array is the number of elements it contains.

For any array a, the expression a[a.length-1] always returns the last element.

https://github.com/pdst-lccs/lccs-javascript/blob/main/ch10_arrays/arrayModify.js

JavaScript Manual for LCCS Teachers 151

Array length

You can find out how many elements are in an array by using the array’s length property10.

The dot operator is used to access the length property (just as it is used to access all

object properties).

For example, let’s say we wanted to find the length of the array items declared as follows:

let items = ["Bread", "Milk", "Tea"];

This array has three elements:

items[0] Bread

items[1] Milk

items[2] Tea

The following line displays the length of items on the console.

console.log(items.length); // displays 3

By this stage it should be evident that the index of the last element in an array is always the

length of the array minus 1. This is to compensate for the fact that the index of the first

element is zero. Thus, the expression items[items.length-1] would return the string

Tea in this example.

KEY POINTS:

 The first element in every array has an index of zero.

 The last element in every array, a has an index of, a.length - 1.

 Therefore valid indices range from 0 up to array length minus 1

Experiment!

Devise a situation to test what would happen when you try to access an

array using an index that is out of range.

10 In JavaScript, all arrays are treated as objects and as such they have associated properties and
methods.

https://github.com/pdst-lccs/lccs-javascript/blob/main/ch10_arrays/arrayLength.js

JavaScript Manual for LCCS Teachers 152

Array Methods11

Like all objects, arrays have methods - here’s a list of some of the more common ones.

Method name Description

arrA.concat(arrB)
Returns a new array made up of the elements of arrA followed

by the elements of arrB.

arrA.indexOf(item)
Returns the index of the first occurrence of the value specified

by item in arrA. If the item is not found the method returns -1

arrA.lastIndexOf(item)

Starting from the end, returns the index of the first occurrence of

the value specified by item in arrA. If item is not found the

method returns -1

arrA.join([separator])
Returns all the elements of the array joined together as a string.

The default value of the optional separator is a comma.

arrA.push(items)
Appends one or more elements (as specified by items) to the

end of arrA and returns the new length of the array.

arrA.pop()
Removes the last element of arrA. Returns the element

removed or undefined if the array was empty

arrA.shift()
Removes the first element of arrA. Returns the element

removed or undefined if the array was empty

arrA.unshift(items)
Inserts one or more elements (as specified by items) to the start

of arrA and returns the new length of the array.

arrA.sort()
Sorts the elements of array in place and returns the sorted array

(in alphabetical order)

arrA.reverse()
Sorts the elements of array in place and returns the sorted array

(in alphabetical order)

arrA.slice([i1], [i2])

Returns a new array made up of the elements of arrA from i1

up to but not including i2. If i1 is not specified it is taken to be

zero; if i2 is not specified it is taken to be arrA.length. The

contents of the original array are unchanged.

arrA.splice(i, [n,

[items]])

Adds/replaces/remove elements from an array in place. i is the

starting index, n is the number of elements to remove and

items are the new elements.

Returns a new array with any removed elements. (If no

elements are removed an empty array is returned.)

11 Browse to either of these sites for a more complete reference to array methods:
https://www.w3schools.com/jsref/jsref_obj_array.asp
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array

https://www.w3schools.com/jsref/jsref_obj_array.asp
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array

JavaScript Manual for LCCS Teachers 153

The code below demonstrates the use of some of the methods just described.

push and pop

Elements can be added to and removed from an array using the methods push and pop.

 push adds one or more elements to the end of an array. It increases the length of the

array by the number of values that are added.

 pop removes the last element from an array. It reduces the length of an array by 1.

Try the following:

let items = ["Bread", "Milk", "Tea"];

items.push("Butter", "Jam"); // add Butter and Jam

items.pop(); // remove Jam

console.log(items); // display the array

The resulting output is:

Explain why ‘Jam’ is not included in the output of the array items

shown above.

How might ‘Tea’ have been removed before adding ‘Butter’ and ‘Jam’?

KEY POINT: Methods are invoked using the dot operator. To invoke a method m on an

array a we write a.m()

https://github.com/pdst-lccs/lccs-javascript/blob/main/ch10_arrays/arrayPushPop.js

JavaScript Manual for LCCS Teachers 154

shift and unshift

Two other array methods that are closely related to push and pop are shift and unshift.

let items = ["Bread", "Milk", "Tea"];

items.shift(); // ??

console.log(items); // display the array

items.unshift(); // ??

console.log(items); // display the array

Experiment! Key in and run the code above. Based on the output describe

what the two methods shift and unshift do?

slice, concat, sort, reverse and join

These methods are demonstrated in the short program.

let weekDays = ['Mon', 'Tue', 'Wed', 'Thur', 'Fri'];

let weekendDays = ['Sat', 'Sun'];

console.log(weekDays.slice(2));

console.log(weekDays.slice(1,3));

console.log(weekDays.concat(weekendDays););

console.log(weekendDays.concat(weekDays););

console.log(weekDays.sort());

console.log(weekendDays.reverse());

console.log(weekendDays.join(' and '));

The output generated by each of the console.log statements is shown below. You should

read through the code carefully and try to understand how this output is arrived at.

["Wed","Thur","Fri"]

["Tue", "Wed"]

["Mon","Tue","Wed","Thur","Fri","Sat","Sun"]

["Sat","Sun","Mon","Tue","Wed","Thur","Fri"]

["Fri", "Mon", "Thur", "Tue", "Wed"]

["Sun", "Sat"]

Sat and Sun

https://github.com/pdst-lccs/lccs-javascript/blob/main/ch10_arrays/arrayShiftUnshift.js
https://github.com/pdst-lccs/lccs-javascript/blob/main/ch10_arrays/arraySlice.js

JavaScript Manual for LCCS Teachers 155

Predict the output generated by the code shown below.

let weekDays = ['Mon', 'Tue', 'Wed', 'Thur', 'Fri'];

let weekendDays = ['Sat', 'Sun'];

let daysOfWeek = weekendDays.concat(weekDays);

console.log(daysOfWeek.join());

console.log(daysOfWeek.slice(2));

console.log(daysOfWeek.slice(2,5));

console.log(weekDays.concat("Weekend"));

console.log(weekendDays.sort());

console.log(weekDays.reverse());

splice

This handy method can be used to insert/remove/replace elements from the array it acts on.

For example, let’s say we had an array called weekDays with the values:

['Mon', 'Wed', 'Thur']

weekDays.splice(1, 0, "Tuesday");

This line inserts 'Tuesday' at index position 1. The use of zero as the second argument tells

JavaScript not to remove any elements. All elements to the right of position 1 (including

'Wed') are pushed down the array before the insertion. This results in weekDays being

changed to the following: ['Mon', 'Tuesday' 'Wed', 'Thur'] .

weekDays.splice(1, 2);

This line tells JavaScript to remove two elements from the array called weekDays starting at

index position 1. The array is changed in place to become ['Mon'] and a new array

containing the deleted elements is returned i.e. ['Wed', 'Thur'].

https://github.com/pdst-lccs/lccs-javascript/blob/main/ch10_arrays/arraySliceExercise.js

JavaScript Manual for LCCS Teachers 156

Array Processing (traversing arrays)

Consider the code shown below.

let daysInMonths = [31,28,31,30,31,30,31,31,30,31,30,31];

for (let i=0; i < daysInMonths.length; i++)

 console.log("Month %d has %d days", (i+1), daysInMonths[i]);

The code displays the output shown here to the right.

The for loop iterates over every element in the array using an

index variable i.

The index is initialised to zero and is incremented on each loop

iteration. The loop continues as long as i is less than 12 which

is the length of the array. This is fine since the index of the last

element in the array is 11.

The loop body displays a single line of output on each iteration.

Because the program visits each element of the array once this type of program is known as

an array traversal. Array traversals are quite a common pattern in programming. Here are

some more examples.

KEY POINT: An array traversal is a programming pattern that involves iterating over

each element in an array.

1. This program traverses two arrays simultaneously

let daysInMonths = [31,28,31,30,31,30,31,31,30,31,30,31];

let months = ["Jan","Feb","Mar","Apr","May","June","July","Aug","Sept","Oct","Nov","Dec"];

for (let i=0; i < daysInMonths.length; i++)

 console.log("%s has %d days\n", months[i], daysInMonths[i]);

Predict the output of the code.

https://github.com/pdst-lccs/lccs-javascript/blob/main/ch10_arrays/arrayProcessing.js
https://github.com/pdst-lccs/lccs-javascript/blob/main/ch10_arrays/arrayProcessing1.js

JavaScript Manual for LCCS Teachers 157

2. This program computes the arithmetic mean of the elements of an array

let ages = [18, 16, 18, 17, 19, 17];

let total = 0;

for (let i=0; i < ages.length; i++)

 total = total + ages[i];

console.log("The mean age is %d", total/ages.length);

How could the assignment total = total + ages[i]; be written more

succinctly?

Is the calculation correct in your opinion?

3. This program traverses an array to find the maximum value it contains

let ages = [18, 16, 18, 17, 19, 17];

let max = 0;

for (let i=0; i < ages.length; i++) {

 if (ages[i] > max)

 max = ages[i];

}

console.log("The maximum age is %d", max);

Explain how the above program works.

Are the curly braces necessary? Explain.

https://github.com/pdst-lccs/lccs-javascript/blob/main/ch10_arrays/arrayProcessing2.js
https://github.com/pdst-lccs/lccs-javascript/blob/main/ch10_arrays/arrayProcessing3.js

JavaScript Manual for LCCS Teachers 158

Copying arrays and array references

Let us say we declared and initialised two integer arrays – arr1 and arr2 - as follows.

let arr1 = [1, 3, 5, 7, 9];

let arr2 = [];

It may be useful to think of the two arrays looking like the following in memory. The array of

odd numbers shown on the left is arr1, and the empty array shown on the right is arr2.

The code below copies the contents of arr1 into arr2.

for (let index = 0; index < arr1.length; index++) {

 arr2[index] = arr1[index];

}

Each element of the arr1 is copied one-by-one into the corresponding position to arr2.

The resulting arrays are depicted below:

https://github.com/pdst-lccs/lccs-javascript/blob/main/ch10_arrays/arrayCopy1.js

JavaScript Manual for LCCS Teachers 159

It is important to note from the previous example that arr2 is a copy of arr1. The two

arrays are distinct data structures and as such their contents can be changed independently

of one another.

This can be contrasted with the situation highlighted on Line 2 in the code below in which a

reference of arr1 is assigned to the variable arr2. The output is shown on the right.

let arr1 = [1, 3, 5, 7, 9];

let arr2 = arr1;

console.log("BEFORE TRAVERSAL");

console.log("Array 1:", arr1);

console.log("Array 2:", arr2);

for (let i=0; i < arr1.length; i++) {

 arr1[i]++;

}

console.log("AFTER TRAVERSAL");

console.log("Array 1:", arr1);

console.log("Array 2:", arr2);

Code Output

The effect of Line 2 is depicted in the graphic below.

arr1 and arr2 both refer to the same array

Any changes that are made to arr1 are also made to arr2. The for loop traverses over

arr1 incrementing every element along the way. The state of the two array objects after the

for loop is depicted below.

arr2 is a reference to arr1 and vice versa

Explain why the output of the above program would remain the same if

the loop traversed arr2 (as opposed to arr1).

https://github.com/pdst-lccs/lccs-javascript/blob/main/ch10_arrays/arrayCopy2.js

JavaScript Manual for LCCS Teachers 160

Passing arrays into functions

When an array is passed as an argument to a function, it is the reference to the original

array that is passed, not a copy of the array. Therefore, any changes that are made to such

arrays inside the function survive after the function terminates.

This is demonstrated in the code below which defines a function called incrementValues.

This function adds 1 to each element of the array passed into it. The function is called on the

second last line of the code listing.

function incrementValues(arrayParam) {

 console.log("incrementValues() called");

 for (let i=0; i < arrayParam.length; i++) {

 arrayParam[i]++;

 }

 console.log("incrementValues() ends");

} // end incrementValues()

let argArray = [1, 3, 5, 7, 9];

console.log("Array before call:", argArray);

incrementValues(argArray);

console.log("Array after call:", argArray);

The code results in the following output.

As can be seen the value of argArray has been changed by the function.

KEY POINT: Arrays are passed by reference to functions.

https://github.com/pdst-lccs/lccs-javascript/blob/main/ch10_arrays/arrayPassing.js

JavaScript Manual for LCCS Teachers 161

Programming Exercises - Arrays

1 Write a line of code to initialise an array as follows:

['spring', 'summer', 'autumn', 'winter']

2 Write a line of code to initialise an array with the days of the week (i.e. 'Sunday' through

to 'Saturday'). Call your array weekDays. Now write code to display the elements:

a) weekdays[0]

b) weekdays[5]

c) weekdays[weekdays.length-1]

4. Write a line of code to initialise an array with the names of the twelve months of the year.

Write a second line of code to initialise an array with the number of days in each month

(assume 28 days for February)

Now implement the following:

 prompt the user to enter the name of a month.

 look up the index of the month entered from the months array.

 access the element at this index from the days array.

 display the number of days in the month.

For example, if the user entered March the program should display the output message

March has 31 days.

5. Write a program to generate and store 100 randomly generated integers between 1 and

10 in an array.

6. Write a program to read in five separate values from an end user and store them in an

array.

7. Write a program to find the first 10 prime numbers and store them in an array.

JavaScript Manual for LCCS Teachers 162

8. Write a program that adds the contents of two arrays and store the results in a third

array. For example, if the two input arrays were initialised as follows:

let arrOfEvens = [2, 4, 6, 8, 10]

let arrOfOdds = [1, 3, 5, 7, 9]

The output array would contain:

[3, 7, 11, 15, 19]

9. Write a program to find the largest value in the array shown below.

[18, 23, 16, 18, 23, 21, 15, 16, 23, 21]

Modify your program so that it displays the number of times the maximum value occurs.

10. Write a program to find the arithmetic mean, median and mode of the array shown

below.

[18, 23, 16, 18, 23, 21, 15, 16, 23, 21]

11. Given an array daysOfWeek declared as follows:

let daysOfWeek = ['Sun', 'Mon', 'Tue', 'Wed', 'Thur', 'Fri', 'Sat'];

a) write a line of code to remove the first and last elements using shift and pop

respectively. The array should end up looking like this:

['Mon', 'Tue', 'Wed', 'Thur', 'Fri'];

b) write a line of code to add the elements ‘Sat’ and ‘Sun’ to the end. (Hint: use push.)

12. Given an array suits declared as follows:

let suits = ['Hearts', 'Diamonds', 'Spades'];

Use the splice method to insert the value ‘Clubs’ between ‘Diamonds’ and ‘Spades’ so

that the array is changed to: ['Hearts', 'Diamonds', 'Clubs', 'Spades'];

JavaScript Manual for LCCS Teachers 163

13. The Python program shown here simulates the selection of a random card from a deck

of cards. (i.e. pick a card, any card).

a) Implement the program in JavaScript.

b) Extend your program to deal five cards. (Hint: you will need to build up a new array –

call it hand – and each time a random card is generated append it to hand.)

c) Test your program to make sure that the same card cannot be dealt more than once.

14. Design and write a JavaScript program to determine whether or not a sentence entered

by the user is a pangram. A pangram is a sentence that uses every letter of the alphabet

at least once.

Hint: You could use an array to represent the frequency of each letter i.e. the number of

a’s, b’s etc.? If, after processing the sentence, there is no letter with a frequency of zero

the sentence must be a pangram.

JavaScript Manual for LCCS Teachers 164

Reflect on all the exercises in this section.

Suggest how you could adapt any of the exercises for use in your own LCCS

classroom.

JavaScript Manual for LCCS Teachers 165

11. Functions
A function is a group of statements designed to carry out a specific task. Functions are the

building blocks of programs. They are important because they enable programmers to store

useful functionality which can be invoked in a single line of code – the function call.

Function Syntax – defining and calling functions

A function needs only to be defined once, but it can be called multiple times. Each time a

function is called the statements that make up the function are executed. This means that

functions can save programmers from having to repeat the same lines of code every time

they need a specific task carried out. Therefore, functions can be used to avoid duplication

of code.

The general syntax for defining a new function is as follows:

function <function-name>([parameters]){

 statement(s)

}

The first line in the function definition is important because it contains the necessary

information required by other programmers to use the function. It is referred to as the

function signature. The signature comprises the name of the function and an optional list of

parameters that can be passed into the function when it is called.

The name of the function is chosen by the programmer. The rules for naming functions are

the same as those for naming variables.

KEY POINT: A function is a short piece of re-usable code that carries out a

specific task when it is called.

Once a function has been defined it just takes one line of code to use it. This is the function

call. The general form of a function call look like this.

function([arguments]);

JavaScript Manual for LCCS Teachers 166

The beauty of functions lies in their ease of use. Let’s look at some examples.

Example 1

The code below draws a square box on the console. The output is shown to the right.

console.log("+------+");

console.log("| |");

console.log("| |");

console.log("+------+");

Now let’s say we wanted our program to draw two square boxes – we would have to

duplicate the code as follows.

console.log("+------+");

console.log("| |");

console.log("| |");

console.log("+------+");

console.log("+------+");

console.log("| |");

console.log("| |");

console.log("+------+");

Every time we want to draw a square box we need to duplicate the code – this can get

messy. A better solution is to package up the code into a function as shown below.

function drawBox() {

 console.log("+------+");

 console.log("| |");

 console.log("| |");

 console.log("+------+");

}

KEY POINT: Functions provide a means for programmers to package up and

store functionality for use in other places in the program.

https://github.com/pdst-lccs/lccs-javascript/blob/main/ch11_functions/example1A.js
https://github.com/pdst-lccs/lccs-javascript/blob/main/ch11_functions/example1B.js
https://github.com/pdst-lccs/lccs-javascript/blob/main/ch11_functions/example1C.js

JavaScript Manual for LCCS Teachers 167

When the program in the last example is run you will notice that nothing appears to happen.

In particular, the box is no longer displayed. This is because the function hasn’t been called

– yet!

To call the function we just need a single statement - drawBox();

function drawBox() {

 console.log("+------+");

 console.log("| |");

 console.log("| |");

 console.log("+------+");

}

drawBox();

The semantics of a function call are explained as follows. When a function is called, the flow

of control jumps to the first line of the function and execution continues from that point to the

last line of the function. As soon as the last line of the function has been executed the flow of

control jumps back to the point from which the call to the function was initially made.

Once a function has been defined it can be called anywhere in the code. (In JavaScript a

function call can appear in the code before its definition.)

drawBox();

drawBox();

drawBox();

drawBox();

drawBox();

KEY POINT: A function call causes the code inside the function body to be
executed.

https://github.com/pdst-lccs/lccs-javascript/blob/main/ch11_functions/example1D.js
https://github.com/pdst-lccs/lccs-javascript/blob/main/ch11_functions/example1E.js

JavaScript Manual for LCCS Teachers 168

Example 2

The example below shows a definition of a function called displayRhyme - the program

output is displayed on the right.

function displayRhyme() {

 console.log("Jack loves to do his homework");

 console.log("He never misses a day");

 console.log("He even loves the men in white");

 console.log("Who are taking him away");

}

displayRhyme(); // call the function displayRhyme

console.log(""); // display a blank line

displayRhyme();// call the function displayRhyme

Notice that the rhyme appears twice in the output. This is because the function that displays

the rhyme is called twice in the code.

When the function is called for the first time the flow of control is switched to the function and

the code is executed in sequence until the last line of the function body is reached. At this

point JavaScript returns to the point in the code where the call to the function was made. The

next line to be executed is console.log(""); - once this line has been executed, JavaScript

executes the last line of the program which is the second call to displayRhyme.

Notice in the above code that the same name i.e. Jack is

always displayed in our rhyme. This is because Jack is hard-

coded into the function.

Wouldn’t it be nice if we could display the rhyme using

different names? If we could only tell the function what name

to display.

This can be done using parameters and arguments.

https://github.com/pdst-lccs/lccs-javascript/blob/main/ch11_functions/displayRhyme1.js

JavaScript Manual for LCCS Teachers 169

Parameters and arguments

A parameter is a special kind of variable which appears as part of the function signature and

can be used inside the function body. Parameters allow programmers to pass information

into a function.

Let’s add a parameter to our previous example so that it can display the rhyme about

anybody – not just Jack!

function displayRhyme(personName) {

 console.log(personName, "loves to do his homework");

 console.log("He never misses a day");

 console.log("He even loves the men in white");

 console.log("Who are taking him away");

}

displayRhyme("James");

The name James (and not Jack!) is

now included in the rhyme

Notice from the code:

 the identifier personName (highlighted in red) between brackets in the function signature

on the first line. This is an example of a function parameter. A parameter is a special kind

of variable that is initialised when the function is called.

 the text James (highlighted in green) between brackets is used as part of the function

call on the last line? This is a function argument. Arguments are passed into functions.

In the above example the string James is passed as an argument into the function

displayRhyme. The value is received into the function by the parameter personName.

KEY POINT: A function parameter is a variable which gets it value from the

argument passed in. When a function is called the value of the argument is

assigned to the parameter.

https://github.com/pdst-lccs/lccs-javascript/blob/main/ch11_functions/displayRhyme2.js

JavaScript Manual for LCCS Teachers 170

The advantage of using parameters and arguments is that they make functions much more

flexible. The runtime behaviour of a function can be altered by passing different arguments

into it. This point is demonstrated below where the three calls on the left hand side result in

the output displayed on the right.

function displayRhyme(personName) {

 console.log(personName, "loves to do his homework");

 console.log("He never misses a day");

 console.log("He even loves the men in white");

 console.log("Who are taking him away");

}

displayRhyme("James");

console.log("");

displayRhyme("Joe");

console.log("");

displayRhyme("Fred");

console.log("");

The parameter is personName and the three arguments are James, Joe and Fred. At

runtime, the parameter is assigned to each argument and its value is used in the output.

Experiment! Key in and run the code above. Once you are familiar with what

it does, change the code so that the output displayed will appear as shown

below.

Use the space below to list your
parameter(s) and argument(s)

KEY POINT: In general, you should always pass the same number of

arguments into the function as the number of parameters that are specified in

the function signature.

https://github.com/pdst-lccs/lccs-javascript/blob/main/ch11_functions/displayRhyme3.js

JavaScript Manual for LCCS Teachers 171

Multiple parameters/arguments

A function can have more than just one parameter. Take a look at the following:

function displayLyrics(line1, line2) {

 console.log(line1);

 console.log(line2);

}

displayLyrics("I read the news today", "Oh boy");

When displayLyrics is called the arguments "I read the news today", and "Oh boy" are

passed in and received by two parameters line1 and line2 respectively. Notice the use of

a comma to separate parameters (and arguments) from one another?

The program causes the following output to be displayed on the output console:

I read the news today

Oh boy

Parameters are received into a function in the same order as the arguments provided.

Therefore, if the arguments were switched around like this;

displayLyrics("Oh boy", "I read the news today");

the function would cause the text below to be displayed.

Oh boy

I read the news today

Experiment! Predict the output of the code below. Now key the code in and

run it. Was your prediction correct? What did you notice?

function displayLines(line3, line1, line2) {

 console.log(line1);

 console.log(line2);

 console.log(line3);

}

displayLines ("One", "Two", "Three");

https://github.com/pdst-lccs/lccs-javascript/blob/main/ch11_functions/displayLyrics.js
https://github.com/pdst-lccs/lccs-javascript/blob/main/ch11_functions/displayLines.js

JavaScript Manual for LCCS Teachers 172

Study the two function definitions shown below and answer the

question that follows.

function displayGreeting1(msg) {

 console.log(msg);

}

 function displayGreeting2(msg1, msg2) {

 console.log(msg1);

 console.log(msg2);

}

displayGreeting1
displayGreeting2

State what you would expect to happen when each of the code blocks displayed on the left

hand side below is run.

 Code Block Expected output

a)
displayGreeting1("Good evening, Dave");

b) let str = "Good evening, Dave";

displayGreeting1(str);

c) let name = "Dave";

displayGreeting1("Good evening", name);

d)
displayGreeting2("Good evening", "Dave");

e) let name = "Dave";

displayGreeting2("Good evening", name);

f) let str = "Good evening, Dave";

displayGreeting2(str);

g) let sum = 2+3;

displayGreeting1(sum);

h) let sum = "2+3";

displayGreeting1(sum);

i) let sum = "2+3";

displayGreeting2(sum, 2+3);

j)
displayGreeting2("2+3", "equals", "5");

JavaScript Manual for LCCS Teachers 173

Describe what (if anything) is wrong with each of the following pieces of

code and in each case outline a solution (if appropriate).

a)

function displayMessage() {

 console.log(msg);

}

displayMessage("I am Sam");

b)

function displayMessage(msg) {

 console.log(msg);

}

displayMessage();

c)

function displayMessage(msg) {

 console.log(msg);

}

displayMessage("I am", "Sam");

d)

function displayMessage(msg) {

 console.log(message);

}

displayMessage("I am Sam");

e)

function displayMessage(msg) {

 console.log(msg);

}

displayMessage(I am Sam);

f)

function displayMessage(msg1, msg2) {

 console.log(msg1);

}

displayMessage("I am", "Sam");

JavaScript Manual for LCCS Teachers 174

Return Values

Functions can be thought of as ‘little machines’ that accept input(s) and sometimes generate

an output. These ‘function machines’ are sometimes referred to as ‘black boxes’ – so called

because programmers who use them don’t really care too much about what goes on inside

them. The programmers only concern is that the function does the job it is designed to do.

This black box view of functions is depicted below.

The ‘black box’ view of a function

We already know that arguments and parameters are used to pass data into functions. But

how does a function pass any data it generates back to its caller as an output? The answer

is – return values.

Consider a scenario where we wanted to convert an amount in euros and generate a return

value which represents the equivalent amount in US dollars. The JavaScript code shown

below defines a function called convert to do the job. The function receives two

parameters – euroAmount and rate. The arguments passed into the function are amount

and 1.13 respectively. (The program reads the amount from the end-used and uses a hard-

coded conversion rate of €1 = $1.13).

// A function to convert from € to $

function convert(euroAmount, rate) {

 let dollar = amount * rate;

 return dollar; // return the converted amount

}

// Prompt the user to enter the Euro amount

let amount = Number(prompt("Enter amount (€)"));

// Call convert and save the returned value in dollarAmount

let dollarAmount = convert(amount, 1.13);

// Display the answer

console.log("€"+amount+" is worth $"+dollarAmount);

https://github.com/pdst-lccs/lccs-javascript/blob/main/ch11_functions/convertEuroToDollar.js

JavaScript Manual for LCCS Teachers 175

The inputs and output are depicted using our ‘black box’ model as follows

KEY POINT: The return value of a function can be saved for further

processing by making the function call part of an assignment statement.

Example

The function below converts miles to kilometres (based on 1 𝑚𝑖𝑙𝑒 = 1.6𝑘𝑚). The input to

the function is the parameter miles. The return value of the function is kms. This is the

function output.

function miles2kms(miles) {

 let kms = miles * 1.6;

 return kms;

}

The code below calls the function passing in 50 as an argument. (The objective is to find out

the number of kilometres in 50 miles.)

let kimometers = miles2kms(50);

console.log("There are "+kimometers+"kms in 50 miles");

The program displays the following line on the output console.

There are 80kms in 50 miles

The output of the function is kms. This value is assigned to the variable kilometres. Once

a function ends its variables and parameters are all destroyed.

https://github.com/pdst-lccs/lccs-javascript/blob/main/ch11_functions/convertMilesToKms.js

JavaScript Manual for LCCS Teachers 176

Experiment! The function shown below (kms2miles) accepts a value in

kilometres as input and then outputs the equivalent in miles (based on

𝟏 𝒌𝒎 = 𝟎. 𝟔𝟐𝒎𝒊𝒍𝒆𝒔)

Write a line of code to call this function to convert 80 kilometres into miles and save the

output in a variable called miles. Now write a second line to display the converted value in

a meaningful message. (Can you combine the two lines into one?)

function kms2miles(kms) {

 let miles = kms * 0.62;

 return miles;

}

Now write another line of code to call the function we defined earlier (miles2kms). Use

miles (returned by your call to kms2miles) as the argument. What is your result?

KEY POINT: A function is an abstraction for the task it performs.

Take a look at the two function definitions for add below and answer the

questions that follow.

function add1(n1, n2) {

 return n1+n2;

}

 function add2(n1, n2) {

 let sum = n1+n2;

 console.log(n1+"+"+n2+"="+sum);

}

Which function is better in your opinion? Why? Write a line of code to call add1 – save your

answer in a variable e.g. answer. Now try to do the same for add2. What problem do you

encounter?

https://github.com/pdst-lccs/lccs-javascript/blob/main/ch11_functions/convertKmsToMiles.js
https://github.com/pdst-lccs/lccs-javascript/blob/main/ch11_functions/add1.js
https://github.com/pdst-lccs/lccs-javascript/blob/main/ch11_functions/add2.js

JavaScript Manual for LCCS Teachers 177

Describe what (if anything) is wrong with each of the following pieces of

code and in each case outline a solution (if appropriate).

a)

function add(n1, n2) {

 let sum = n1+n2;

 return sum;

}

let result = add(8, 3);

console.log(sum);

b)

function add(n1, n2) {

 let sum = n1+n2;

 return;

}

let result = add(8, 3);

console.log(result);

c)

function add(n1, n2) {

 let sum = n1+n2;

 return sum;

}

let result = add(8, 3);

d)

function add(n1, n2) {

 return(n1+n2);

}

console.log(add(8, 3));

e)

function add(n1, n2) {

 let sum = n1+n2;

 return sum;

}

let result = add(8, add(2,1));

console.log(result);

JavaScript Manual for LCCS Teachers 178

Boolean Functions

A Boolean function is a function that returns either true or false. They are usually used as

an abstraction for some type of test. For example, we could write a Boolean function to

determine whether a given number is prime or not.

By convention the name of a Boolean function starts with the prefix is. By using this

convention, a Boolean function to determine whether or not a given year is a leap year could

be called isLeap. Similarly, a function to test the evenness or oddness of a number could

be called isEven and isOdd respectively. An example implementation of these two

functions and their use to display all even/odd numbers between 0 and 100 inclusive is

shown below. (The test for evenness is based on a ‘divide by 2’ remainder operation.)

// A function to determine ‘evenness’

function isEven(number) {

 if (number % 2 === 0)

 return true;

 else

 return false;

}

for (let n=0; n<=100; n++) {

 if (isEven(n))

 console.log(n);

}

 // A function to determine ‘oddness’

function isOdd(number) {

 if (number % 2 !== 0)

 return true;

 else

 return false;

}

for (let n=0; n<=100; n++) {

 if (isOdd(n))

 console.log(n);

}

isEven isOdd

Challenge!

Implement the following Boolean functions. Test your code using data

entered via prompt.

isLessThan(a, b)
A function that returns true if a is less than b. false

otherwise.

isGtREqual2(a, b)
A function that returns true if a is greater than or equal to b.

false otherwise.

isSpeeding(speed)
A function that returns true if the value of speed is greater

than 120. false otherwise.

isTeenager(age)
A function that returns true if the value of age is between 13

and 19 inclusive. false otherwise.

isGoodMusic(artist)

A function that returns true if the value of artist is a

member of an array that contains the names of all your

favourite music artists. false otherwise.

https://github.com/pdst-lccs/lccs-javascript/blob/main/ch11_functions/isEven.js
https://github.com/pdst-lccs/lccs-javascript/blob/main/ch11_functions/isOdd.js

JavaScript Manual for LCCS Teachers 179

Encapsulating code in functions

The process of taking code and putting it into functions is called encapsulation.

Recall from earlier the problem to determine the maximum of three numbers. The code -

shown again here for convenience - determines and displays the largest of three numbers

entered by the user.

// max of 3

let x1 = Number(prompt("Please enter 1st number: "));

let x2 = Number(prompt("Please enter 2nd number: "));

let x3 = Number(prompt("Please enter 3rd number: "));

let max;

if ((x1 >= x2) && (x1 >= x3)) {

 max = x1;

} else if ((x2 >= x1) && (x2 >= x3)) {

 max = x2;

} else {

 max = x3;

}

console.log("The largest number you entered was", max);

Let’s try to encapsulate this code into a function – for this we will need to decide on a name,

possible parameter(s) and a possible return value.

The following three questions are useful to ask when attempting to encapsulate any code

using functions:

1) What does the code do? This would be a good name for the function.

In this example, the essence of the code is to find the maximum of three numbers so we

will call our function maxOf3.

2) What are the inputs? The function should have a parameter for each input.

In our example, the inputs are the three numbers – we will have one parameter for each

number – x1, x2 and x3.

3) What is the output? This will be the return value of the function

We only have one output i.e. the maximum of the three numbers.

KEY POINT: The ability to be able to identify function parameters and, if

necessary, a return value is a key programmer skill.

https://github.com/pdst-lccs/lccs-javascript/blob/main/ch11_functions/maxOf3_v1.js

JavaScript Manual for LCCS Teachers 180

We can see from the code below that the code to determine the largest of three numbers

has been encapsulated in the function maxOf3 (highlighted in a darker colour).

Notice that the first three lines used to read the numbers from the end user, and the final line

to display the result are not part of the function. This separation of input and output from the

logic of a function is typical when it comes to code encapsulation.

// Read the three numbers from the end user

let x1 = Number(prompt("Please enter 1st number: "));

let x2 = Number(prompt("Please enter 2nd number: "));

let x3 = Number(prompt("Please enter 3rd number: "));

function maxOf3(x1, x2, x3) {

 let max;

 if ((x1 >= x2) && (x1 >= x3)) {

 max = x1;

 } else if ((x2 >= x1) && (x2 >= x3)) {

 max = x2;

 } else {

 max = x3;

 }

 return max;

}

// Display the output

console.log("The maximum number is", maxOf3(x1, x2, x3));

The code is very similar to the listing shown on the previous page. However, since the

functionality to find the maximum of three numbers has been captured inside a function it

means that it could be used anywhere else in the wider system.

Finally, it is worth pointing out for clarity that the names of the arguments and the names of

the parameters do not have to be the same (as shown above).

https://github.com/pdst-lccs/lccs-javascript/blob/main/ch11_functions/maxOf3_v2.js

JavaScript Manual for LCCS Teachers 181

Programming Exercises - Functions

1. The two short programs shown beside each other here calculate and display 5! (i.e. 5

factorial which is 5 × 4 × 3 × 2 × 1) The both employ the same method which is to iterate

through the integers from 5 down to 1 keeping a running total of the products as they do

so. The only difference is the program on the left uses a for loop and the program on

the right uses a while loop.

Encapsulate the code from either implementation into a function called factorial. The

function should accept a single parameter and return its factorial.

// calculate n! (e.g. 5x4x3x2x1)

let factorial = 1;

let n = 5;

for (let number = n; number > 0; number--) {

 factorial = factorial * number;

}

console.log(n+"! =", factorial);

 // calculate n! (e.g. 5x4x3x2x1)

let factorial = 1;

let n = 5;

let number = n;

while (number > 0) {

 factorial = factorial * number;

 number--;

}

console.log(n+"! =", factorial);

Factorial using a for loop Factorial using a while loop

2. The following program uses a for loop to traverse every character in a string entered by

the user, counting the vowels as it does so. Encapsulate the code in a function.

// prompt the user to enter a string

let inString = prompt("Enter a string:");

let vowels = 0;

let ch;

for(let i = 0; i < inString.length; i ++) {

 // Extract the next character (from position i) ...

 // ... and convert it to upper case

 ch = inString.charAt(i).toUpperCase();

 // if ch is a vowel increment the vowel counter

 if (ch == 'A' || ch == 'E' || ch == 'I' || ch == 'O' || ch == 'U')

 vowels ++;

}

// display the result

console.log("The number of vowels found was", vowels);

https://github.com/pdst-lccs/lccs-javascript/blob/main/ch11_functions/factorialFor.js
https://github.com/pdst-lccs/lccs-javascript/blob/main/ch11_functions/factorialWhile.js
https://github.com/pdst-lccs/lccs-javascript/blob/main/ch11_functions/countVowels.js

JavaScript Manual for LCCS Teachers 182

3. A prime number is a positive integer that has exactly two factors; itself and 1. The short

program shown below prompts the user to enter a positive integer and implements an

algorithm to determine whether the number is prime or not.

The key to understanding the logic of the program lies behind the Boolean variable

called prime. The purpose of prime is to indicate whether the integer in question is

prime or not. A value of true at the end of the program indicates that the integer is

indeed prime; false otherwise.

let x = Number(prompt("Please enter an integer: "));

let prime;

if (x <= 0)

 prime = false;

else

 prime = true;

if (x > 2) {

 let denominator = 2;

 while (denominator <= Math.sqrt(x)) {

 if (x % denominator === 0) {

 prime = false;

 break;

 } else {

 denominator++;

 } // end else

 } // end while

} // end if

if (prime)

 console.log(x+" is prime");

else

 console.log(x+" is NOT prime");

Encapsulate the above code into a function called isPrime(x). The required behaviour is

illustrated in the following example calls to the function.

isPrime(13) --> true (because 13 is a prime number)

isPrime(10) --> false (because 10 is not a prime number)

Once you have successfully implemented isPrime you should attempt to complete these

additional tasks:

a) Use the isPrime function to display all the prime numbers between 2 and 100 inclusive.

b) Use the isPrime function to count and display the number of prime numbers between 2

and 1000.

c) Use isPrime to display the first 50 prime numbers.

https://github.com/pdst-lccs/lccs-javascript/blob/main/ch11_functions/isPrime.js

JavaScript Manual for LCCS Teachers 183

4. Define a function to calculate the area of a

triangle using the formula:

𝑎𝑟𝑒𝑎 =
1

2
× 𝑏 × ℎ

Use this function to calculate the areas of the

triangles displayed below:

5. The image on the right hand side illustrates the

Fahrenheit values for a selection of Celsius values.

Given the formulae below to convert between the two

scales write a program that can be used to verify the

accuracy of the values shown.

𝑓 =
9

5
𝑐 + 32

𝑐 = (𝑓 − 32) ×

5

9

The program will contain two functions named and defined

as follows:

fhar2Cent - a function that accepts a Fahrenheit value

and returns its Celsius equivalent and

cent2Fhar - a function that accepts a Celsius value and

returns its Fahrenheit equivalent

6. Write a program that prompts a user to enter a number of days and then proceeds to

compute the number of minutes in that number of days.

a) extend the program just written to prompt for a number of hours as well as a number

of days.

JavaScript Manual for LCCS Teachers 184

Reflect on all the exercises in this section.

Suggest how you could adapt any of the exercises for use in your own LCCS

classroom.

JavaScript Manual for LCCS Teachers 185

BREAKOUT ACTIVITY 1

Computer Aided Learning

Computer Aided Instruction (CAI) is playing an increasing role in education. For this activity

you are required to write a JavaScript application that will help primary school pupils learn

arithmetic. We call the application Computer Aided Learning or CAL for short.

You are provided with a program (see listing on the next page) which you will need to make

changes to in order to develop an improved solution.

When it is run, the program displays a popup window asking the user to enter the answer to

a simple addition problem involving two randomly selected single digit integers between 0

and 9 inclusive. For example,

The user types in their response clicks OK. If the response is correct the program displays

an encouragement message in a new popup window such as that shown below. The

message displayed is picked randomly from the following list (array) of strings:

 Well done!

 Very good!

 Correct!

 Keep it up!

 Nice work!

If the answer is wrong, the program displays the message, Wrong answer. Try again

repeatedly until the pupil finally enters the right answer.

JavaScript Manual for LCCS Teachers 186

The program listing you are provided with is shown below.

// STEP 1. Generate the question

// Generate 2 random numbers

let n1 = Math.floor(Math.random() * 10); // 0 <= n1 < 10

let n2 = Math.floor(Math.random() * 10); // 0 <= n2 < 10

// STEP 2. Ask the user the question and get a response

// n1 and n2 are converted to strings so that they can be displayed as part ...

// ... of the prompt string

let problemInWords = "What is "+ String(n1) + " + " + String(n2); // Q1

console.log(problemInWords);

let userResponse = Number(prompt(problemInWords));

console.log("User entered %d", userResponse); // this is for debug purposes

// STEP 3. Process the response

// Compute the correct answer. Then ...

// ... as long as the user's answer is different to the computer's answer ...

// ... tell the user they are wrong and ...

// ... ask the user for another response

let correctAnswer = n1 + n2; // Compute the correct answer

while (userResponse != correctAnswer) {

 console.log("Wrong answer! Try again.");

 userResponse = Number(prompt(problemInWords));

 console.log("User entered %d", userResponse); // this is for debug purposes

} // end while

// STEP 4. Display a randomly selected encouragement message

const messages = ["Well done!", "Very good!", "Correct!", "Keep it up!", "Nice

work!"];

const r = Math.floor(Math.random() * messages.length);

console.log(messages[r]);

alert(messages[r]);

CAL v1 Initial Code Listing

Study the above program carefully before trying it out – use the space below to reflect on the

code. Demonstrate that you understand the code by answering the questions listed on the

next page. Once you are satisfied that you understand how the code works you can then

proceed to the attempt the exercises.

What is your initial impression of the above program?

https://github.com/pdst-lccs/lccs-javascript/blob/main/ch12_Breakout1/CAL_InitialCode.js

JavaScript Manual for LCCS Teachers 187

Use the space below to answer each of the following questions before

moving on to the exercises in the next section.

1. How does the program generate the two integers to use in the ‘sum’? What step(s) are

taken to ensure that the integers are between 0 and 9 inclusive?

2. How does the computer know what the correct answer to the ‘sum’ is?

3. Explain how the + operator behaves differently when its operands are string as

opposed to being of a numeric type? (What would happen if you tried to add a string to

an integer?)

4. How does the program select a message to display when the user gets the answer

right?

5. Identify and state the purpose of each variable (there are seven of them!)

JavaScript Manual for LCCS Teachers 188

Exercises

Attempt each of the following questions. The questions can be attempted in any order but we

recommend carrying them out in the same sequence as they are given. Although it is

possible to build the solutions on top of one another you are encouraged to return to the

initial code base for each question i.e. implement each solution separately over the initial

code listing provided earlier.

1. Change the way the question is displayed so that it uses the operator symbol as

opposed to words. So for example display 4 + 2 as opposed to the text 4 plus 2.

2. Incorporate a statistics feature (i.e. a

counter) to keep track of the number of

attempts it took a user to get the correct

answer. This value should be displayed

once before the program ends. A sample

output is shown here to the right.

3. Modify the program so that the computer responses for an incorrect answer are

randomly selected from the list of messages below. The message should be displayed in

an alert box such as that shown below as well as the console (sample output shown).

 No. Please try again

 Wrong. Try once more

 Don’t give up

 No. Keep trying.

 Incorrect!

JavaScript Manual for LCCS Teachers 189

4. Modify the program behaviour so that once the user enters the correct answer the user is

offered the choice to continue (or quit) i.e. Continue [Y/N]. (see screenshot) Processing

should continue as long as the user enters ‘y’ or ‘Y’

Hint: You will need to introduce a Boolean variable e.g. quit, initially set to false. The

original code will need to wrapped inside a while loop. The loop will be executed as

long as quit is false. At the end of the loop you will need to add code find out if the

user wants to continue. If the user enters anything other than ‘y’ or ‘Y’ then set quit to

true (this will cause the loop to end).

5. Add an option to allow the user to choose a difficulty level (of either 1 or 2) when the

program is first started. If the user enters 1 it means that problems should involve single

digit integers (i.e. between 0 and 9 inclusive only). If the user enters 2 the application

should generate double digit problems (i.e. problems that involve two integers in the

range 10 to 99 inclusive). You may write code to validate the user’s option if you wish.

Hint: You will need the line of code below which generates a random number between

10 and 99 inclusive.

Math.floor(Math.random() * 90) + 10;

6. Add an option to allow the user to select the arithmetic operation they wish to use during

their session. Use the following encoding: ‘+’ is addition; ‘-‘ is subtraction; ‘*’ is

multiplication and ‘/’ is division;

JavaScript Manual for LCCS Teachers 190

7. The current implementation has no exit strategy i.e. the user has no way of telling of

telling the system that they don’t know the answer. (It repeatedly displays the message

Wrong answer. Try again until the correct answer is entered.)

Consequently, the user is left stuck with no way of exiting the system if he/she doesn’t

know the answer to the question

Modify the program’s behaviour so that any negative value entered as a response is

taken to mean that the user does not know the answer to the question presented. When

a negative value is entered the program should display the correct answer in the console

and then end.

8. Now that you have attempted each question individually try to incorporate all the

solutions into a single program.

The solutions to each individual exercise are provided at the end of this section.

10 further questions for you to consider

The questions below are designed to provoke ideas for possible enhancements that could

be made to CAL at some stage in the future.

1) How can you ensure that the system is fully tested?

2) How could you ensure that all the data entered by the user is validated?

3) Can you come up with an alternative ‘exit strategy’ to the one proposed in question 7?

4) Would operations involving a mixture of single and double digit operands be possible?

5) How could the system be extended to support other types of operations?

6) How could the system automatically select the type of operation for each question

randomly?

7) Could the strategy for setting the difficulty level be made more ‘intelligent’? What would

this involve?

8) How could the system track the average number of attempts the user takes?

9) What would the system look like as a HTML/CSS web page? Sketch it out.

10) What other extensions could be made to the system?

JavaScript Manual for LCCS Teachers 191

Extended challenge

Now that you have attempted each question individually try to incorporate all the solutions

into a single modular program i.e. one that uses functions.

The structure of the main program loop is shown below. Your task is to implement the

functions.

Hint: Abstraction and decomposition as the key skills required. You will need to build up the

solution function by function.

// MAIN PROGRAM STARTS HERE

const correctMessages = ["Well done!", "Very good!", "Correct!", "Keep it up!",

"Nice work!"];

const incorrectMessages = ["No! Please try again", "Wrong! Try once more", "Don't

give up!", "No! Keep trying", "That's incorrect"];

let quit = false;

while (!quit) {

 // Ask the user to enter the difficulty level, the operation and the two operands

 let difficultyLevel = getDifficultyLevel();

 let operation = getOperation();

 let n1 = getOperand(difficultyLevel);

 let n2 = getOperand(difficultyLevel);

 // determine the correct answer from the computer

 let correctAnswer = getCorrectAnswer(n1, n2, operation);

 // keep asking the question until the user gets it right or gives up

 let questionString = "What is "+ String(n1) + operation + String(n2);

 let userResponse = getResponse(questionString);

 while (userResponse != correctAnswer && userResponse > 0) {

 displayRandomMsg(incorrectMessages);

 userResponse = getResponse(questionString);

 }

 // check if the user got it right or 'gave up'

 if (userResponse == correctAnswer) {

 displayRandomMsg(correctMessages);

 } else {

 console.log("Answer not known. The correct answer was", correctAnswer);

 alert("Answer not known. The correct answer was" + String(correctAnswer));

 }

 // Finally, determine whether to keep going or not

 let yesNo = prompt("Continue [Y/N]");

 quit = yesNo.toUpperCase() == "Y" ? false : true;

} // end while

The solution to this exercise is shown on page 203.

https://github.com/pdst-lccs/lccs-javascript/blob/main/ch12_Breakout1/CAL_SolutionStubQ9.js

JavaScript Manual for LCCS Teachers 192

Reflect on CAL and the exercises just complete in this breakout session.

The focus of CAL is very much on early stage arithmetic – can you suggest

how CAL could be adapted to assist learning in other subject areas?

Discuss is small groups. What are the design implications?

JavaScript Manual for LCCS Teachers 193

Suggested Solutions to Breakout #1 (CAL)

The solutions to each of the eight exercise are provided in the following pages. The

comments serve to explain the code.

Each solution is implemented over the initial code base – shown again here for convenience.

// STEP 1. Generate the question

// Generate 2 random numbers

let n1 = Math.floor(Math.random() * 10); // 0 <= n1 < 10

let n2 = Math.floor(Math.random() * 10); // 0 <= n2 < 10

// STEP 2. Ask the user the question and get a response

// n1 and n2 are converted to strings so that they can be displayed as part ...

// ... of the prompt string

let problemInWords = "What is "+ String(n1) + " plus " + String(n2);

console.log(problemInWords);

let userResponse = Number(prompt(problemInWords));

console.log("User entered %d", userResponse); // this is for debug purposes

// STEP 3. Process the response

// Compute the correct answer. Then ...

// ... as long as the user's answer is different to the computer's answer ...

// ... tell the user they are wrong and ...

// ... ask the user for another response

let correctAnswer = n1 + n2; // Compute the correct answer

while (userResponse != correctAnswer) {

 console.log("Wrong answer! Try again.");

 userResponse = Number(prompt(problemInWords));

 console.log("User entered %d", userResponse); // this is for debug purposes

} // end while

// STEP 4. Display a randomly selected encouragement message

const messages = ["Well done!", "Very good!", "Correct!", "Keep it up!", "Nice work!"];

const r = Math.floor(Math.random() * messages.length);

console.log(messages[r]);

alert(messages[r]);

CAL v1 Initial Code Listing

As you read through the solutions to each questions in the following pages you will notice

some of the code is highlighted in bold. This is used to indicate the parts of the program that

were changed, added and/or commented out in order to achieve the solution. You should

make an effort to understand each solution before moving on to the next.

https://github.com/pdst-lccs/lccs-javascript/blob/main/ch12_Breakout1/CAL_InitialCode.js

JavaScript Manual for LCCS Teachers 194

Breakout #1 (CAL): Question 1 and Suggested Solution

Change the way the question is displayed so that it uses the operator symbol as opposed to

words. So for example display 4 + 2 as opposed to the text 4 plus 2.

// CAL Suggested solution to Question 1

// STEP 1. Generate the question

// Generate 2 random numbers

let n1 = Math.floor(Math.random() * 10); // 0 <= n1 < 10

let n2 = Math.floor(Math.random() * 10); // 0 <= n2 < 10

// STEP 2. Ask the user the question and get a response

// n1 and n2 are converted to strings so that they can be displayed as part ...

// ... of the prompt string

let problemInWords = "What is "+ String(n1) + " + " + String(n2); // Q1 replace

'plus' with '+'

console.log(problemInWords);

let userResponse = Number(prompt(problemInWords));

console.log("User entered %d", userResponse); // this is for debug purposes

// STEP 3. Process the response

// Compute the correct answer. Then ...

// ... as long as the user's answer is different to the computer's answer ...

// ... tell the user they are wrong and ...

// ... ask the user for another response

let correctAnswer = n1 + n2; // Compute the correct answer

while (userResponse != correctAnswer) {

 console.log("Wrong answer! Try again.");

 userResponse = Number(prompt(problemInWords));

 console.log("User entered %d", userResponse); // this is for debug purposes

} // end while

// STEP 4. Display a randomly selected encouragement message

const messages = ["Well done!", "Very good!", "Correct!", "Keep it up!", "Nice

work!"];

const r = Math.floor(Math.random() * messages.length);

console.log(messages[r]);

alert(messages[r]);

https://github.com/pdst-lccs/lccs-javascript/blob/main/ch12_Breakout1/CAL_SolutionQ1.js

JavaScript Manual for LCCS Teachers 195

Breakout #1 (CAL): Question 2 and Suggested Solution

Incorporate a statistics feature (i.e. a counter) to

keep track of the number of attempts it took a user to

get the correct answer. This value should be

displayed once before the program ends. A sample

output is shown here to the right.

// CAL Suggested solution to Question 2

// STEP 1. Generate the question

// Generate 2 random numbers

let n1 = Math.floor(Math.random() * 10); // 0 <= n1 < 10

let n2 = Math.floor(Math.random() * 10); // 0 <= n2 < 10

// STEP 2. Ask the user the question and get a response

// n1 and n2 are converted to strings so that they can be displayed as part ...

// ... of the prompt string

let problemInWords = "What is "+ String(n1) + " plus " + String(n2);

console.log(problemInWords);

let userResponse = Number(prompt(problemInWords));

console.log("User entered %d", userResponse); // this is for debug purposes

// STEP 3. Process the response

// Compute the correct answer. Then ...

// ... as long as the user's answer is different to the computer's answer ...

// ... tell the user they are wrong and ...

// ... ask the user for another response

let correctAnswer = n1 + n2; // Compute the correct answer

let attempts = 1; // Q2 used to store the number of incorrect attempts

while (userResponse != correctAnswer) {

 console.log("Wrong answer! Try again.");

 userResponse = Number(prompt(problemInWords));

 console.log("User entered %d", userResponse); // this is for debug purposes

 attempts++; // Q2 increment attempts

} // end while

// STEP 4. Display a randomly selected encouragement message

const messages = ["Well done!", "Very good!", "Correct!", "Keep it up!", "Nice

work!"];

const r = Math.floor(Math.random() * messages.length);

console.log(messages[r]);

alert(messages[r]);

console.log("You took", attempts, "attempts"); // Q2 display attempts

We use a variable called attempts which is initialised to 1 before the while loop. The

variable is incremented on each loop iteration and finally displayed by the last line of the

program.

https://github.com/pdst-lccs/lccs-javascript/blob/main/ch12_Breakout1/CAL_SolutionQ2.js

JavaScript Manual for LCCS Teachers 196

Breakout #1 (CAL): Question 3 and Suggested Solution

Modify the program so that the computer

responses to an incorrect answer are

randomly selected from the list of messages

shown. The message should be displayed

in an alert box as well as the console.

 No. Please try again

 Wrong. Try once more

 Don’t give up

 No. Keep trying.

 Incorrect!

// CAL Suggested solution to Question 3

// STEP 1. Generate the question

// Generate 2 random numbers

let n1 = Math.floor(Math.random() * 10); // 0 <= n1 < 10

let n2 = Math.floor(Math.random() * 10); // 0 <= n2 < 10

// STEP 2. Ask the user the question and get a response

// n1 and n2 are converted to strings so that they can be displayed as part ...

// ... of the prompt string

let problemInWords = "What is "+ String(n1) + " plus " + String(n2);

console.log(problemInWords);

let userResponse = Number(prompt(problemInWords));

console.log("User entered %d", userResponse); // this is for debug purposes

// STEP 3. Process the response

// Compute the correct answer. Then ...

// ... as long as the user's answer is different to the computer's answer ...

// ... tell the user they are wrong and ...

// ... ask the user for another response

// Q3 - create a list of messages to use if the response in incorrect

const messages1 = ["No! Please try again", "Wrong! Try once more", "Don't give

up!", "No! Keep trying", "That's incorrect"];

let correctAnswer = n1 + n2; // Compute the correct answer

while (userResponse != correctAnswer) {

 // Q3 comment the next line out - it's functionality is replaced by the new

lines below

 // console.log("Wrong answer! Try again.");

 // Q3 Display a randomly selected message telling the user they are wrong

 const index = Math.floor(Math.random() * messages1.length);

 console.log(messages1[index]);

 alert(messages1[index]);

 userResponse = Number(prompt(problemInWords));

 console.log("User entered %d", userResponse); // this is for debug purposes

} // end while

// STEP 4. Display a randomly selected encouragement message

const messages = ["Well done!", "Very good!", "Correct!", "Keep it up!", "Nice

work!"];

const r = Math.floor(Math.random() * messages.length);

console.log(messages[r]);

alert(messages[r]);

https://github.com/pdst-lccs/lccs-javascript/blob/main/ch12_Breakout1/CAL_SolutionQ3.js

JavaScript Manual for LCCS Teachers 197

Breakout #1 (CAL): Question 4 and Suggested Solution

Modify the program behaviour so that once the user enters the correct answer the user is

offered the choice to continue (or quit) i.e. Continue [Y/N]. (see screenshot) Processing

should continue as long as the user enters ‘y’ or ‘Y’

// CAL Suggested solution to Question 4

let quit = false; // Q4 continue as long as the variable quit is false

while (quit == false) { // Q4 the original code is 'wrapped' inside this while loop

 // STEP 1. Generate the question

 // Generate 2 random numbers

 let n1 = Math.floor(Math.random() * 10); // 0 <= n1 < 10

 let n2 = Math.floor(Math.random() * 10); // 0 <= n2 < 10

 // STEP 2. Ask the user the question and get a response

 // n1 and n2 are converted to strings so that they can be displayed as part ...

 // ... of the prompt string

 let problemInWords = "What is "+ String(n1) + " plus " + String(n2);

 console.log(problemInWords);

 let userResponse = Number(prompt(problemInWords));

 console.log("User entered %d", userResponse); // this is for debug purposes

 // STEP 3. Process the response

 // Compute the correct answer. Then ...

 // ... as long as the user's answer is different to the computer's answer ...

 // ... tell the user they are wrong and ...

 // ... ask the user for another response

 let correctAnswer = n1 + n2; // Compute the correct answer

 while (userResponse != correctAnswer) {

 console.log("Wrong answer! Try again.");

 userResponse = Number(prompt(problemInWords));

 console.log("User entered %d", userResponse); // this is for debug purposes

 } // end while

 // STEP 4. Display a randomly selected encouragement message

 const messages = ["Well done!", "Very good!", "Correct!", "Keep it up!", "Nice

work!"];

 const r = Math.floor(Math.random() * messages.length);

 console.log(messages[r]);

 alert(messages[r]);

 // Q4 find out if the user wants to continue ...

 // ... if the user enters anything other than Y then ..

 // ... set quit to true (this will cause the loop to end)

 let yesNo = prompt("Continue [Y/N]");

 if (yesNo.toUpperCase() != "Y")

 quit = true;

} // Q4 end of while loop

https://github.com/pdst-lccs/lccs-javascript/blob/main/ch12_Breakout1/CAL_SolutionQ4.js

JavaScript Manual for LCCS Teachers 198

Breakout #1 (CAL): Question 5 and Suggested Solution

Add an option to allow the user to choose a difficulty level (of either 1 or 2) when the

program is first started. If the user enters 1 it means that problems should involve single digit

integers (i.e. between 0 and 9 inclusive only). If the user enters 2 the application should

generate double digit problems (i.e. problems that involve two integers in the range 10 to 99

inclusive). You may write code to validate the user’s option if you wish.

// CAL Suggested solution to Question 5

let diffLevelQuestion = "Enter difficulty level (1 or 2)";

console.log(diffLevelQuestion);

let difficultyLevel = Number(prompt(diffLevelQuestion));

let n1, n2;

if (difficultyLevel == 1) {

 // Generate 2 random numbers between 0 and 9 incl.

 n1 = Math.floor(Math.random() * 10); // 0 <= n1 < 10

 n2 = Math.floor(Math.random() * 10); // 0 <= n2 < 10

} else {

 // Generate 2 random numbers between 10 and 99 incl.

 n1 = Math.floor(Math.random() * 90) + 10; // 10 <= n1 < 100

 n2 = Math.floor(Math.random() * 90) + 10; // 10 <= n2 < 100

}

/// STEP 1. Generate the question

// Generate 2 random numbers

// Q5 comment out the next two lines (n1 and n2 are set above)

//let n1 = Math.floor(Math.random() * 10); // 0 <= n1 < 10

//let n2 = Math.floor(Math.random() * 10); // 0 <= n2 < 10

// STEP 2. Ask the user the question and get a response

// n1 and n2 are converted to strings so that they can be displayed as part ...

// ... of the prompt string

let problemInWords = "What is "+ String(n1) + " plus " + String(n2);

console.log(problemInWords);

let userResponse = Number(prompt(problemInWords));

console.log("User entered %d", userResponse); // this is for debug purposes

// STEP 3. Process the response

// Compute the correct answer. Then ...

// ... as long as the user's answer is different to the computer's answer ...

// ... tell the user they are wrong and ...

// ... ask the user for another response

let correctAnswer = n1 + n2; // Compute the correct answer

while (userResponse != correctAnswer) {

 console.log("Wrong answer! Try again.");

 userResponse = Number(prompt(problemInWords));

 console.log("User entered %d", userResponse); // this is for debug purposes

} // end while

// STEP 4. Display a randomly selected encouragement message

const messages = ["Well done!", "Very good!", "Correct!", "Keep it up!", "Nice

work!"];

const r = Math.floor(Math.random() * messages.length);

console.log(messages[r]);

alert(messages[r]);

The code to validate the user’s option is left as a further challenge!

https://github.com/pdst-lccs/lccs-javascript/blob/main/ch12_Breakout1/CAL_SolutionQ5.js

JavaScript Manual for LCCS Teachers 199

Breakout #1 (CAL): Question 6 and Suggested Solution

Add an option to allow the user to select the arithmetic operation they wish to use during

their session. Use the following encoding: ‘+’ is addition; ‘-‘ is subtraction; ‘*’ is multiplication

and ‘/’ is division;

// CAL Suggested solution to Question 6

// Q6 Get the required operation from the user

let operationQuestion = "Enter operation ('+', '-', '/' or '*')";

console.log(operationQuestion);

let operation = prompt(operationQuestion);

// STEP 1. Generate the question

// Generate 2 random numbers

let n1 = Math.floor(Math.random() * 10); // 0 <= n1 < 10

let n2 = Math.floor(Math.random() * 10); // 0 <= n2 < 10

// STEP 2. Ask the user the question and get a response

// n1 and n2 are converted to strings so that they can be displayed as part ...

// ... of the prompt string

let problemInWords = "What is "+ String(n1) + operation + String(n2); // Q6

console.log(problemInWords);

let userResponse = Number(prompt(problemInWords));

console.log("User entered %d", userResponse); // this is for debug purposes

// STEP 3. Process the response

// Compute the correct answer. Then ...

// ... as long as the user's answer is different to the computer's answer ...

// ... tell the user they are wrong and ...

// ... ask the user for another response

let correctAnswer; // Q6 = n1 + n2; // Compute the correct answer

// Q6 Compute the correct answer for the operation

if (operation === "+") {

 correctAnswer = n1 + n2;

} else if (operation === "-") {

 correctAnswer = n1 - n2;

} else if (operation === "*") {

 correctAnswer = n1 * n2;

} else {

 correctAnswer = n1 / n2;

}

while (userResponse != correctAnswer) {

 console.log("Wrong answer! Try again.");

 userResponse = Number(prompt(problemInWords));

 console.log("User entered %d", userResponse); // this is for debug purposes

} // end while

// STEP 4. Display a randomly selected encouragement message

const messages = ["Well done!", "Very good!", "Correct!", "Keep it up!", "Nice

work!"];

const r = Math.floor(Math.random() * messages.length);

console.log(messages[r]);

alert(messages[r]);

https://github.com/pdst-lccs/lccs-javascript/blob/main/ch12_Breakout1/CAL_SolutionQ6.js

JavaScript Manual for LCCS Teachers 200

Breakout #1 (CAL): Question 7 and Suggested Solution

The current implementation has no exit strategy i.e. the user has no way of telling of telling

the system that they don’t know the answer. (It repeatedly displays the message Wrong

answer. Try again until the correct answer is entered.)

Consequently, the user is left stuck with no way of exiting the system if he/she doesn’t know

the answer to the question

Modify the program’s behaviour so that any negative value entered as a response is taken to

mean that the user does not know the answer to the question presented. When a negative

value is entered the program should display the correct answer in the console and then end.

// CAL Suggested solution to Question 7

// STEP 1. Generate the question

// Generate 2 random numbers

let n1 = Math.floor(Math.random() * 10); // 0 <= n1 < 10

let n2 = Math.floor(Math.random() * 10); // 0 <= n2 < 10

// STEP 2. Ask the user the question and get a response

// n1 and n2 are converted to strings so that they can be displayed as part ...

// ... of the prompt string

let problemInWords = "What is "+ String(n1) + " plus " + String(n2);

console.log(problemInWords);

let userResponse = Number(prompt(problemInWords));

console.log("User entered %d", userResponse); // this is for debug purposes

// STEP 3. Process the response

// Compute the correct answer. Then ...

// ... as long as the user's answer is different to the computer's answer ...

// ... tell the user they are wrong and ...

// ... ask the user for another response

let correctAnswer = n1 + n2; // Compute the correct answer

while (userResponse != correctAnswer) {

 // Q7 - take a negative response to mean the user doesn't know the answer

 if (userResponse < 0) {

 break; // exit the loop

 } else {

 console.log("Wrong answer! Try again.");

 userResponse = Number(prompt(problemInWords));

 console.log("User entered %d", userResponse); // this is for debug purposes

 }

} // end while

// Q7 - user didn't know the answer so tell them

if (userResponse < 0) {

 console.log("Answer not known. The correct answer was", correctAnswer);

 alert("Answer not known. The correct answer was" + String(correctAnswer));

} else {

 // STEP 4. Display a randomly selected encouragement message

 const messages = ["Well done!", "Very good!", "Correct!", "Keep it up!", "Nice

work!"];

 const r = Math.floor(Math.random() * messages.length);

 console.log(messages[r]);

 alert(messages[r]);

}

https://github.com/pdst-lccs/lccs-javascript/blob/main/ch12_Breakout1/CAL_SolutionQ7.js

JavaScript Manual for LCCS Teachers 201

Breakout #1 (CAL): Question 8 and Suggested Solution

Now that you have attempted each question individually try to incorporate all the solutions

into a single program.

// CAL Suggested solution to Question 8

let quit = false; // Q4 continue as long as the variable quit is false

while (quit == false) { // Q4 the original code is 'wrapped' inside this while

loop

 // Q6 Get the required operation from the user

 let operationQuestion = "Enter operation ('+', '-', '/' or '*')";

 console.log(operationQuestion);

 let operation = prompt(operationQuestion);

 // Q5 solution starts here ...

 let diffLevelQuestion = "Enter difficulty level (1 or 2)";

 console.log(diffLevelQuestion);

 let difficultyLevel = Number(prompt(diffLevelQuestion));

 let n1, n2;

 if (difficultyLevel == 1) {

 // Generate 2 random numbers between 0 and 9 incl.

 n1 = Math.floor(Math.random() * 10); // 0 <= n1 < 10

 n2 = Math.floor(Math.random() * 10); // 0 <= n2 < 10

 } else {

 // Generate 2 random numbers between 10 and 99 incl.

 n1 = Math.floor(Math.random() * 90) + 10; // 10 <= n1 < 100

 n2 = Math.floor(Math.random() * 90) + 10; // 10 <= n2 < 100

 }

 /// STEP 1. Generate the question

 // Generate 2 random numbers

 // Q5 comment out the next two lines (n1 and n2 are set above)

 //let n1 = Math.floor(Math.random() * 10); // 0 <= n1 < 10

 //let n2 = Math.floor(Math.random() * 10); // 0 <= n2 < 10

 // Q5 solution ends here ...

 // STEP 2. Ask the user the question and get a response

 // n1 and n2 are converted to strings so that they can be displayed as part ...

 // ... of the prompt string

 let problemInWords = "What is "+ String(n1) + operation + String(n2); // Q6

 console.log(problemInWords);

 let userResponse = Number(prompt(problemInWords));

 console.log("User entered %d", userResponse); // this is for debug purposes

 // STEP 3. Process the response

 // Compute the correct answer. Then ...

 // ... as long as the user's answer is different to the computer's answer ...

 // ... tell the user they are wrong and ...

 // ... ask the user for another response

 let correctAnswer; // Q6 = n1 + n2; // Compute the correct answer

 // Q6 Compute the correct answer for the operation

 if (operation === "+") {

 correctAnswer = n1 + n2;

 } else if (operation === "-") {

 correctAnswer = n1 - n2;

 } else if (operation === "*") {

 correctAnswer = n1 * n2;

 } else {

 correctAnswer = n1 / n2;

 }

JavaScript Manual for LCCS Teachers 202

 let attempts = 1; // Q2 used to store the number of incorrect attempts

 // Q3 - create a list of messages to use if the response in incorrect

 const messages1 = ["No! Please try again", "Wrong! Try once more", "Don't give

up!", "No! Keep trying", "That's incorrect"];

 while (userResponse != correctAnswer) {

 // Q7 - take a negative response to mean the user doesn't know the answer

 if (userResponse < 0) {

 break; // exit the loop

 } else {

 //console.log("Wrong answer! Try again.");

 // Q3 Display a randomly selected message telling the user they are wrong

 const index = Math.floor(Math.random() * messages1.length);

 console.log(messages1[index]);

 alert(messages1[index]);

 userResponse = Number(prompt(problemInWords));

 console.log("User entered %d", userResponse); // this is for debug purposes

 attempts++; // Q2 increment attempts

 }

 } // end while

 // Q7 - user didn't know the answer so tell them

 if (userResponse < 0) {

 console.log("Answer not known. The correct answer was", correctAnswer);

 alert("Answer not known. The correct answer was" + String(correctAnswer));

 } else {

 // STEP 4. Display a randomly selected encouragement message

 const messages = ["Well done!", "Very good!", "Correct!", "Keep it up!",

"Nice work!"];

 const r = Math.floor(Math.random() * messages.length);

 console.log(messages[r]);

 alert(messages[r]);

 }

 console.log("You took", attempts, "attempts"); // Q2 display attempts

 // Q4 find out if the user wants to continue ...

 // ... if the user enters anything other than Y then ..

 // ... set quit to true (this will cause the loop to end)

 let yesNo = prompt("Continue [Y/N]");

 if (yesNo.toUpperCase() != "Y")

 quit = true;

} // Q4 end of while loop

https://github.com/pdst-lccs/lccs-javascript/blob/main/ch12_Breakout1/CAL_SolutionQ8.js

JavaScript Manual for LCCS Teachers 203

Breakout #1 (CAL): Suggested Solution to extended challenge

Now that you have attempted each question individually try to incorporate all the solutions

into a single modular program i.e. one that uses functions.

The structure of the main program loop is shown (again) below. Your task is to implement

the functions.

// MAIN PROGRAM STARTS HERE

const correctMessages = ["Well done!", "Very good!", "Correct!", "Keep it up!",

"Nice work!"];

const incorrectMessages = ["No! Please try again", "Wrong! Try once more", "Don't

give up!", "No! Keep trying", "That's incorrect"];

let quit = false;

while (!quit) {

 // Ask the user to enter the difficulty level, the operation and the two operands

 let difficultyLevel = getDifficultyLevel();

 let operation = getOperation();

 let n1 = getOperand(difficultyLevel);

 let n2 = getOperand(difficultyLevel);

 // determine the correct answer from the computer

 let correctAnswer = getCorrectAnswer(n1, n2, operation);

 // keep asking the question until the user gets it right or gives up

 let questionString = "What is "+ String(n1) + operation + String(n2);

 let userResponse = getResponse(questionString);

 while (userResponse != correctAnswer && userResponse > 0) {

 displayRandomMsg(incorrectMessages);

 userResponse = getResponse(questionString);

 }

 // check if the user got it right or 'gave up'

 if (userResponse == correctAnswer) {

 displayRandomMsg(correctMessages);

 } else {

 console.log("Answer not known. The correct answer was", correctAnswer);

 alert("Answer not known. The correct answer was" + String(correctAnswer));

 }

 // Finally, determine whether to keep going or not

 let yesNo = prompt("Continue [Y/N]");

 quit = yesNo.toUpperCase() == "Y" ? false : true;

} // end while

JavaScript Manual for LCCS Teachers 204

The first step towards a solution here is to insert empty functions at the top of the program

listing shown on the previous page. Empty functions such as these are called stub

functions and are often used by programmers as placeholders so that they can focus their

attention on one aspect of functionality at a time without having to worry about syntax errors

caused by missing function definitions.

// CAL Suggested solution to Question 9 - function stubs

// A function to return the arithmetic operation

function getOperation() {

} // end getOperation

// A function to return the difficulty level

function getDifficultyLevel() {

} // end getDifficultyLevel

// A function to generate an operand based on the difficulty level

function getOperand(level) {

} // end getOperand

// A function to receive the user's answer

function getResponse(problemInWords) {

} // end getResponse

// A function to compute the correct answer

function getCorrectAnswer(op1, op2, op){

} // getCorrectAnswer

// A function that generates and displays a random message

function displayRandomMsg(messages) {

} // end displayRandomMsg

// MAIN PROGRAM STARTS HERE

The code for each function is shown on the following pages.

https://github.com/pdst-lccs/lccs-javascript/blob/main/ch12_Breakout1/CAL_SolutionStubQ9.js

JavaScript Manual for LCCS Teachers 205

// A function to return the arithmetic operation

function getOperation() {

 let operationQuestion = "Enter operation ('+', '-', '/' or '*')";

 console.log(operationQuestion);

 return prompt(operationQuestion);

} // end getOperation

// A function to return the difficulty level

function getDifficultyLevel() {

 let diffLevelQuestion = "Enter difficulty level (1 or 2)";

 console.log(diffLevelQuestion);

 return Number(prompt(diffLevelQuestion));

} // end getDifficultyLevel

// A function to generate an operand based on the difficulty level

function getOperand(level) {

 if (level === 1) {

 // Generate a random number between 0 and 9 incl.

 return Math.floor(Math.random() * 10); // 0 <= n2 < 10

 } else {

 // Generate a random number between 10 and 99 incl.

 return Math.floor(Math.random() * 90) + 10; // 10 <= n2 < 100

 }

} // end getOperand

// A function to receive the user's answer

function getResponse(problemInWords) {

 console.log(problemInWords);

 let userResponse = Number(prompt(problemInWords));

 console.log("User entered %d", userResponse); // this is for debug purposes

 return userResponse;

} // end getResponse

// A function to compute the correct answer

function getCorrectAnswer(op1, op2, op){

 let correctAnswer;

 // Compute the correct answer for the operation

 if (op === "+") {

 correctAnswer = op1 + op2;

 } else if (op === "-") {

 correctAnswer = op1 - op2;

 } else if (op === "*") {

 correctAnswer = op1 * op2;

 } else {

 correctAnswer = op1 / op2;

 }

 return correctAnswer;

} // getCorrectAnswer

The above functions can be assembled together into

a single modular program available here.

https://github.com/pdst-lccs/lccs-javascript/blob/main/ch12_Breakout1/CAL_SolutionQ9.js

JavaScript Manual for LCCS Teachers 206

BLANK PAGE

JavaScript Manual for LCCS Teachers 207

13. Client-side JavaScript
So far in this manual we have focused on the main features of JavaScript which are used to

support sequence, selection and iteration. These features combine to make up what is

commonly referred to as core JavaScript. While core JavaScript is important, it only presents

a limited view of the language.

The real power and purpose of JavaScript only begin to emerge when it is used to create

dynamic and interactive web pages and websites. The term client-side JavaScript is used to

describe the features of JavaScript which make these types of websites possible.

In this section of the manual we will explore client-side JavaScript but before we start let’s

just clarify what is meant by the two terms dynamic web page and interactive web page?

- A dynamic (as opposed to static) web page is a page whose contents and appearance

can change as it is being used. Most modern websites contain some pages with dynamic

content. This means that content can be different each time you visit the same page; or it

may be that the content is changed ‘on-the-fly’ while you are looking at a page.

- An interactive website is one which supports user interactivity e.g. playing a game,

selecting a product to purchase or entering and submitting data such as a search term,

credit card details, or uploading an image to Instagram or Facebook.

Dynamic and interactive websites are made possible by virtue of two technologies – DOM

and events. The remainder of this section explores client-side JavaScript support for both.

JavaScript Manual for LCCS Teachers 208

Dynamic web pages – some examples

The simplest way to inject dynamic content into a web page from a JavaScript program is to

use document.write. Simply type the statement and pass in the string you want to see on

the web page as an argument.

The examples below illustrate the use of document.write to create dynamic web page

content. The JavaScript code is shown on the left and a screenshot of the resulting web

page is shown on the right.

document.write("Hello World");

The next example illustrates that HTML code can be passed into document.write. The

 tag causes a new line to be rendered in the browser window before the second string

is displayed.

document.write("Hello World
");

document.write("Hello World");

In this next example we see the text is marked up as a level 1 heading with the h1 tag

document.write("<h1>Hello World</h1>");

The next example prompts the user to enter their name and displays a personalised greeting

message. The name entered – in this case Joe - is marked up in bold.

let userName = prompt("Enter your name");

document.write("Hello " + userName + "");

JavaScript Manual for LCCS Teachers 209

This next example makes use of a user-defined function called getTimeMsg to generate a

different greeting message depending on the current time. The current time is read from the

system using Date(). The JavaScript code is included inline between the opening and

closing script tags in the HTML code as shown.

<!DOCTYPE html>

<html lang="en">

 <head>

 <title>Display the time</title>

 <meta charset="utf-8">

 </head>

 <body>

 <!– Inline JS for this web page -->

 <script>

 let timeMsg = "The current date and time is " + Date() + "

";

 document.write(timeMsg); // not recommended!

 let greeting = getTimeMsg();

 document.write(greeting); // not recommended!

 function getTimeMsg() {

 let msg;

 const time = new Date().getHours();

 if (time < 6) {

 msg = "Before 6am";

 } else if (time < 12) {

 msg = "Good morning";

 } else if (time < 18) {

 msg = "Good afternoon";

 } else {

 msg = "Good evening";

 }

 return msg;

 } // end getTimeMsg

 </script>

 </body>

</html>

When the program is run your browser should display a greeting message that looks

something like this:

Challenge!

Modify the code so that the message, ‘Good night’ gets displayed after 10pm

https://github.com/pdst-lccs/lccs-javascript/blob/main/ch13_clientSideJS/getTime.html

JavaScript Manual for LCCS Teachers 210

The Document Object Model (DOM)

The Document Object Model (or DOM for short) provides a means for programmers to inject

dynamic content into web pages. It is the recommended alternative to using

document.write which should not be used because when a program calls

document.write after the web page is loaded the entire page gets overwritten which we

do not want to happen!

The DOM is a data structure used to represent web pages. To understand the DOM more

fully it is useful to consider web pages from the perspectives – firstly from the perspective of

the HTML author and secondly from the perspective of the the end-user.

HTML perspective of a web page

This is the view pf a web page as seen by the HTML/CSS author. Every web page is a

representation of a HTML file or document. The HTML and/or CSS file(s) must be changed

in order to change the content and/or appearance of the web page.

An example HTML file is shown below.

<!DOCTYPE html>

<html>

 <head>

 <title>A simple web page</title>

 </head>

 <body id="body-id">

 <h1>Level 1 heading</h1>

 Hats

 Flags

 Scarves

 Headbands

 <h2>Level 2 heading</h2>

 <p id="para-id">An ordinary paragraph ...</p>

 <p>This bold <i>and italic</i> text</p>

 <script>

 </script>

 </body>

</html>

KEY POINT: In order to make changes to the content and/or appearance of a web

page the HTML/CSS author must change the HTML/CSS code.

https://github.com/pdst-lccs/lccs-javascript/blob/main/ch13_clientSideJS/simpleWebPage.html

JavaScript Manual for LCCS Teachers 211

End-user view

This is the view of the page as seen by the end-user when they browse to the page. End-

users typically have no interest in, and are often not even aware of the HTML/CSS or

JavaScript code that is behind the pages they visit.

When a browser loads a page it parses the HTML

and renders it according to the rules set out in the

HTML specification. Over the years, programmers

have interpreted these rules in different ways and

this has led to different HTML implementations in

different browsers. This is one of the main reasons

why the exact same HTML may look different on

different browsers.

The HTML code on the previous page is rendered

to an end-user as shown here to the right.

Programmer’s view

This is the view of a web page as seen by the web application developer. When a browser

loads a page it constructs an internal memory representation of that page known as the

DOM. DOM stands for Document Object Model. The illustration below depicts a simplified

DOM representation of the HTML code shown on the previous page.

JavaScript Manual for LCCS Teachers 212

Because this representation resembles an upside down tree, it is referred to as the DOM

tree. Every DOM tree is made up of a collection of nodes starting with a single root node

called document.

Notice in the illustration at the bottom of the previous page that there is a separate node on

the DOM tree for every element in the HTML code on which it is based. These nodes which

are highlighted in green are called element nodes. DOM trees can also contain nodes to

represent text, attributes and comments but these are all omitted from the diagram for the

sake of simplicity and clarity.

KEY POINT: Before a browser can render a page, it builds a DOM tree by parsing

the HTML markup.

As can be seen from the illustration, the DOM tree is very hierarchical in nature. It is useful

to understand some terminology that describes the relationship between the various nodes.

The terms parent, child and sibling are particularly important.

Nodes that appear at the same level on the DOM tree are called sibling nodes. Sibling nodes

share the same parent – or to put it another way - each sibling is said to be a child of the

same parent.

The tree shown to the right here is a sub-section of the

tree shown on the previous page. We can see that the

html element node contains two children – head and

body. These are siblings of one another.

The node for the head element contains only one child

node – this is an element node for title.

The node for the body element contains seven direct

children – these are the nodes for the elements that

appear inside the body section in the HTML code i.e.

h1, ul, h2, p, br, p and script.

JavaScript Manual for LCCS Teachers 213

In the HTML code, the unordered list contains four list items. This is reflected in the DOM

tree where the element node for ul has four children i.e. one child element node for each of

the li elements. The three views are shown below:

 Hats

 Flags

 Scarves

 Headbands

HTML View DOM view User View

Similarly, the markup relating to the second paragraph tag can be

viewed in three ways. First there’s the HTML – notice the

paragraph tag contains a bold tag which itself is marked up in

italics using the i tag.

<p>This bold <i>and italic</i> text</p>

This HTML is rendered as:

DOM view

JavaScript Manual for LCCS Teachers 214

The DOM Application Programming Interface (API)

In the previous section we learned that every web page is represented as a DOM tree and

that changes to the DOM tree are automatically updated in the browser’s display. So for

example, if a new paragraph element is somehow added to the DOM tree then the end-

user’s view displayed in the browser’s window will also be updated to reflect this change.

In this section we will look at how the JavaScript DOM APIs can be used to access and

change DOM trees, thereby dynamically updating the web pages they represent.

KEY POINT: Browsers keep their display in sync with the DOM. So, when the DOM

tree changes the browser automatically updates its display to reflect these changes.

The DOM API is a specification of how programs should interact with the DOM. It lists the

names of functions and properties that can be used by programs to navigate and manipulate

every aspect of a DOM tree.

The good news is that client-side JavaScript comes with a full implementation of the DOM

API. What this essentially means is that JavaScript has a full suite of built-in functions and

properties that can be used to manipulate DOM trees. For example,

 the function createElement can be used to create a new element node.

 the function addChild can be used to add a node at a specific point in the DOM tree.

 the function removeChild can be called to delete a node from the DOM tree.

 the function getElementById can be used to retrieve an element node from the DOM

tree.

 the properties textContent and innerHTML can be used to change the text content of

any node. These properties could potentially be used to change the contents of a

heading or a paragraph or a button or any control that can contain text.

In the next section we will look at example code that uses these APIs

JavaScript Manual for LCCS Teachers 215

DOM Example 1

In this example we will dynamically add a single h1 element to a web page.

<! You should rename this file index.html to run it -->

<!DOCTYPE html>

<html>

 <head>

 <title>DOM Example 1</title>

 </head>

 <body id="body-id">

 <script>

 // create a new h1 element

 let h1Elem = document.createElement("h1");

 // set the h1 element’s text content

 h1Elem.textContent = "This is a level 1 heading!";

 // insert the new h1 element as a child of body

 let bodyElem = document.getElementById("body-id");

 bodyElem.appendChild(h1Elem);

 </script>

 </body>

</html>

The initial DOM tree representation for the HTML is shown below. This is the representation

before the JavaScript code is executed. At this point, if the page was rendered in a browser

it would be blank.

The green nodes are all used to

represent HTML elements. Red and

yellow are used to represent

attribute and text nodes respectively.

Note also that the id attribute on the

body tag has a value of body-id.

This will be used in the JavaScript

code when it calls the function

getElementById.

https://github.com/pdst-lccs/lccs-javascript/blob/main/ch13_clientSideJS/DOMExample1.html

JavaScript Manual for LCCS Teachers 216

The illustration below depicts the DOM representation after the JavaScript code is executed.

As you can see the h1 element has been added to the DOM tree by the JavaScript code.

Because the original HTML did not contain any h1 element we say the heading has been

added dynamically. This has been done by using JavaScript to change the structure of the

DOM tree. Specifically, the JavaScript code creates a new h1 element using the

createElement API. It then calls appendChild to attach the new element to the DOM

tree as the last child of the body element. To do this the program must first know where the

body element is. This is done using getElementById passing in the id of the body

element (body-id) as shown in the JavaScript code on the previous page.

In this example the function getElementById is used in order to retrieve the handle of the

body element. The function works by finding an element whose id attribute matches the

argument passed into it. In the HTML code for example the id attribute for body is body-id.

Therefore, when body-id is passed as an argument into getElementById the DOM

representation for body was returned.

JavaScript Manual for LCCS Teachers 217

DOM Example 2

This example demonstrates the use querySelector as an alternative to

getElementById in order to retrieve a DOM element.

<!DOCTYPE html>

<html lang="en">

 <head>

 <title>DOM Example 2</title>

 </head>

<body id="body-id" class="body-class">

 <script>

 // create a new h1 element

 let h1Elem = document.createElement("h1");

 // set the h1 element's text content

 h1Elem.textContent = "This is a level 1 heading!";

 // insert the new h1 element as a child of body

 let bodyElem = document.querySelector("#body-id"); // or .body-class

 bodyElem.appendChild(h1Elem);

 </script>

 </body>

</html>

As was the case with the previous example, the code here demonstrates how an element

can be dynamically added to a page. The querySelector API accepts an element’s

selector value as an argument - the value of either an element’s id or class attribute are

commonly used as selector values.

Notice in the above code that argument passed into querySelector is the same as the value

of the id attribute for body preceded by a hash symbol (#) i.e. #body-id. The hash tag tells

JavaScript that id is being used as the selector value.

To use the class attribute, the selector must be preceded by a dot as shown here. (This

example assumes the class attribute for body has a value of body-class.)

let bodyElem = document.querySelector(".body-class");

https://github.com/pdst-lccs/lccs-javascript/blob/main/ch13_clientSideJS/DOMExample2.html

JavaScript Manual for LCCS Teachers 218

DOM Example 3

In this example we demonstrate how to insert three heading elements to the body section of

a HTML page.

<!DOCTYPE html>

<html lang="en">

 <head>

 <title>DOM Example 3</title>

 </head>

 <body id="body-id">

 <script>

 let bodyElem = document.getElementById("body-id");

 let h1Elem = document.createElement("h1");

 h1Elem.textContent = "This is a level 1 heading!";

 bodyElem.appendChild(h1Elem);

 let h2Elem = document.createElement("h2");

 h2Elem.textContent = "This is a level 2 heading!";

 bodyElem.appendChild(h2Elem);

 let h4Elem = document.createElement("h4");

 h4Elem.textContent = "This is a level 4 heading!";

 bodyElem.appendChild(h4Elem);

 </script>

 </body>

</html>

Each time we want to add a new element we need to first create it, then set its content and

finally put it on the DOM tree

Notice how in the examples so far the textContent property has been used to set the text

of the heading elements that are being created. Strictly speaking this is incorrect as text

nodes should be used to represented text in a DOM tree. The following code is considered

better.

let bodyElem = document.getElementById("body-id");

let h1Elem = document.createElement("h1");

var textNode = document.createTextNode("Level 1

heading!");

h1Elem.appendChild(textNode);

bodyElem.appendChild(h1Elem);

https://github.com/pdst-lccs/lccs-javascript/blob/main/ch13_clientSideJS/DOMExample3.html

JavaScript Manual for LCCS Teachers 219

DOM Example 4

In this example we demonstrate how to create and insert a h3 element between the h2 and

h4 elements created in the previous example. By following this example you will learn a

technique for dynamically inserting a new element between any two elements.

Assume that a DOM tree already exists and it has three elements - h1, h2 and h4 as

depicted on left hand DOM tree below. We want to insert a h3 element so that the DOM tree

is changed as depicted on the right hand side.

DOM tree before insertion DOM tree after insertion

One way to achieve the requirement is to use insertAdjacentElement as shown in the

code below. The call to insertAdjacentElement inserts the element referenced by

h3Elem after the end of h2Elem in the DOM tree.

let h3Elem = document.createElement("h3");

h3Elem.textContent = "This is a level 3 heading!";

h2Elem.insertAdjacentElement('afterend', h3Elem);

The valid values for the relative position argument are beforebegin, afterbegin,

beforeend and afterend. These are depicted above.

https://github.com/pdst-lccs/lccs-javascript/blob/main/ch13_clientSideJS/DOMExample4.html

JavaScript Manual for LCCS Teachers 220

DOM Example 5

This example demonstrates how to generate an unordered list ‘on-the-fly’ using JavaScript.

The JavaScript code is provided below (you will need to hook this in with the HTML file). The

content of each list is taken from an array of strings called strs which is declared at the top.

<script>

 let strs = ["Milk", "Bread", "Butter", "Crisps"];

 // Retrieve the body element - we will attach the ul element to this later

 let bodyElem = document.getElementById("body-id");

 // Create an element for ul

 let unorderedList = document.createElement("ul");

 for (let i in strs) {

 let listItem = document.createElement("li");

 //anchor.innerText = strs[i];

 listItem.textContent = strs[i];

 unorderedList.appendChild(listItem);

 }

 // Attach the ul element to the body

 bodyElem.appendChild(unorderedList);

</script>

The illustration below depicts a section of the DOM tree along with the actual list as it is

rendered by the browser.

Experiment!

- See if you can achieve the same result using the same lines of code but

arranged in a slightly different order

- See if you can create another type of list e.g. an orderd list or a definition

list

- How would you adapt the code to create a list of paragraphs?

https://github.com/pdst-lccs/lccs-javascript/blob/main/ch13_clientSideJS/DOMExample5.html

JavaScript Manual for LCCS Teachers 221

Events

An event is a programming term used to describe something that happens while a program

is running. In the context of web development events occur continually when we are

interacting with websites through our browser.

Events are typically (but not always) initiated by an end-user e.g. a user clicks on a mouse

button to submit a form, and have very specific JavaScript names e.g. click. When an

event is initiated it is said to be raised (or fired).

From a programming perspective there are two aspects to events – handlers and listeners.

An event handler is the code in your program that will be run when an event is fired.

Handlers are usually implemented as JavaScript functions in your program.

In order to ensure your handler gets called when its event gets fired you first need to register

it with the JavaScript sub-system. Once a handler has been registered JavaScript will

‘listen’ for the event it is registered to handle. When the event is raised the handler will

be called.

HTML/CSS, JavaScript code and the JavaScript/browser sub-system technologies combine

together to form an architecture for event handling which is depicted in the illustration below.

JavaScript Manual for LCCS Teachers 222

The previous illustration depicts how events are processed by JavaScript for a simple button

click. When the button is clicked an event is fired and the handler displays the message

Hello World! in an alert popup.

This processing is explored in more detail using the code shown below.

<!DOCTYPE html>

<html lang="en">

 <head>

 <title>My first event handler</title>

 </head>

 <body id="body-id">

 <button id="btn-id" type="button">Click me!</button>

 <script>

 // 1. Retrieve the button handle

 const btnRef = document.getElementById("btn-id");

 // 2. Attach an event click handler to the time button

 btnRef.addEventListener("click", displayMessage);

 // 3. Handler for time button

 function displayMessage() {

 alert("Hello World!")

 }

 </script>

 </body>

</html>

There are three key steps:

1. The button tag tells the system to display a button with the text Click me!. Note that the

id attribute for the button in btn-id.

2. The JavaScript code registers an event handler called displayMessage for the button.

The handler is said to be attached to the button. In this example, the type of event

handler created is called a click event handler. It responds to user mouse clicks.

3. When the button is clicked by the user the handler is called. This in turn displays an alert

box with the text Hello World!

Because there can be an indefinite amount to time between steps 2 and 3 (the user may

never click the button!) this type of processing is called asynchronous event handling. The

system is primed to listen out for click events on the button, and if one happens it then calls

the function displayMessage.

https://github.com/pdst-lccs/lccs-javascript/blob/main/ch13_clientSideJS/EventHelloWorld.html

JavaScript Manual for LCCS Teachers 223

When the code is run the browser displays a window that looks something like this:

When the user clicks on the button the browser responds by running the handler (i.e.

displayMessage). The popup is displayed with the message Hello World! as shown here.

KEY POINTS:

 Event handlers are user-defined functions that are invoked when an event is fired

 Handlers need to be registered for specific events e.g. click

 You can register a handler with the JavaScript API addEventListener

We will now explore some more examples of how to register event handlers.

JavaScript Manual for LCCS Teachers 224

Events Example 1

In the example we write a handler to display the current time in response to a user clicking a

button on a web page.

The page initially contains a button with the text Click to see the current time. There is also a

paragraph with the text PLACEHOLDER directly beneath the button.

<!DOCTYPE html>

<html>

 <head>

 <title>Event Example 1</title>

 </head>

 <body id="body-id">

 <button id="time" type="button">Click to see the current time</button>

 <p id="demo">PLACEHOLDER</p>

 <script>

 // Attach a handler to the time button

 const timeBtn = document.getElementById("time");

 timeBtn.addEventListener("click", dispTime);

 // Handler for time button

 function dispTime() {

 document.getElementById("demo").textContent = Date();

 }

 </script>

 </body>

</html>

When the user clicks on the button the current time will be rendered as a HTML paragraph

situated directly underneath the button on the page as shown here.

https://github.com/pdst-lccs/lccs-javascript/blob/main/ch13_clientSideJS/EventExample1.html

JavaScript Manual for LCCS Teachers 225

Notice from the code that:

a) The id attribute of the button is time – this is marked in red.

b) The id attribute of the paragraph element is demo – this is marked in blue. The idea

here is to use this a as a placeholder by the JavaScript code to use in order to display

the time when the button is clicked.

c) The name of the event handler is dispTime – this is highlighted in yellow.

Experiment!

Instead of using timeBtn.addEventListener("click", dispTime); to

add a listener try any of the following

timeBtn.addEventListener("dblclick", dispTime);

timeBtn.addEventListener("mousedown", dispTime);

timeBtn.addEventListener("mouseover", dispTime);

JavaScript Manual for LCCS Teachers 226

Events Example 2

In the previous example the time is always displayed in the same position on the page. This

means that when the button is clicked, the previously displayed time is overwritten with the

new value for time.

In this example the times appear underneath each other as new paragraphs on the page.

This is depicted below.

Before click After click

The effect is achieved by modifying the event handler, dispTime, from the previous

example to the one shown in the listing below.

 // Display the time

 function dispTime() {

 let dateTimeStr = Date();

 document.getElementById("demo").textContent = dateTimeStr;

 // Add the time as the last child of body

 let bodyElem = document.getElementById("body-id");

 let newPara = document.createElement("p");

 newPara.textContent = dateTimeStr;

 bodyElem.appendChild(newPara);

 }

The handler calls createElement to construct a new DOM paragraph element. The

paragraph text is set using its textContent property. Finally, appendChild is called to

insert the paragraph element as child element of the body. The paragraph is placed on the

DOM tree at the end of all elements that appear inside the element body.

https://github.com/pdst-lccs/lccs-javascript/blob/main/ch13_clientSideJS/EventExample2.html

JavaScript Manual for LCCS Teachers 227

Events Example 3

The screenshot shown below illustrates the idea of the next example.

When the user types text into the entry

field and clicks OK the text is displayed on

the web page. Each piece of new text is

appended as a new paragraph under a

div section which is declared inside the

body of the HTML code.

The HTML and JavaScript code for this page is shown below.

<!DOCTYPE html>

<html lang="en">

 <head>

 <title>Event Example 3</title>

 </head>

 <body>

 <h1>Text Entry Demo</h1>

 <label for="txt-field">Enter some text</label>

 <input type="text" id="txt-field">

 <button id="ok-btn" type="button">OK</button>

 <!-- an empty div section as a structural placeholder for text -->

 <div id="result-div"></div>

 <script>

 const textField = document.getElementById('txt-field');

 const okBtn = document.getElementById('ok-btn'); // retrieve the OK button

 okBtn.addEventListener('click', buttonClicked); // attach the handler

 // Handler code to execute when the OK button gets clicked

 function buttonClicked() {

 // Add the entered data as the last child of the result division

 let divElem = document.getElementById("result-div");

 let newPara = document.createElement("p");

 newPara.textContent = textField.value;

 divElem.appendChild(newPara);

 textField.focus(); // set the focus back to the text field

 textField.value = ""; // clear the contents of the text field

 }

 </script>

 </body>

</html>

https://github.com/pdst-lccs/lccs-javascript/blob/main/ch13_clientSideJS/EventExample3.html

JavaScript Manual for LCCS Teachers 228

Events Example 4

This example is pretty much the same as the previous one – this time instead of appearing

as paragraphs, the text is rendered as list items in an unordered (i.e. a bulleted) list. Here’s

the JavaScript code – remember it needs to be hooked in with the HTML.

 const textField = document.getElementById('txt-field');

 textField.focus(); // set the focus to the text field

 // Attach a listener to the ok button - in one step!

 document.getElementById('ok-btn').addEventListener('click', buttonClicked);

 function buttonClicked() {

 let dataEntered = textField.value;

 let listItem = document.createElement("li");

 listItem.textContent = dataEntered;

 // Add the entered data as the last child of an unordered list

 let unorderedList = document.getElementById("ul");

 // If the list doesn't exist create it and

 // ... insert it as a child of the result division

 if (unorderedList == null) {

 let divElem = document.getElementById("result-div");

 unorderedList = document.createElement("ul");

 divElem.appendChild(unorderedList);

 }

 unorderedList.appendChild(listItem);

 textField.focus();

 textField.value = "";

 }

Explanation: Each time the user clicks the OK button a new list item element (li) is

appended as a child of the ul element. Each li is contained by the same ul parent. Of

course, in order to add each li to a ul, the ul itself must exist. The code ensures that the

ul exists by testing whether its handle is null or not. If the ul handle is null then the ul

is created and added to the div section of the HTML document.

The behaviour of the code when the user types HTML into the entry field is illustrated below.

Before user clicks OK After user enters “HTML” and clicks OK

https://github.com/pdst-lccs/lccs-javascript/blob/main/ch13_clientSideJS/EventExample4.html

JavaScript Manual for LCCS Teachers 229

Events Example 5

This example is a ‘number guessing game’ – the initial HTML page is based on the previous

two examples. When the game is started the browser looks something like this.

The JavaScript code generates a random integer between 1 and 10 inclusive and every time

the user submits a guess, the program responds with one of two feedback messages –

either Congratulations! or Wrong! – depending on whether the number entered was correct

or not.

The HTML code below declares a placeholder called rightOrWrong which can be used in

the JavaScript code (shown on the next page) to add the appropriate feedback message.

<!DOCTYPE html>

<html lang="en">

 <head>

 <title>Event Example 5 </title>

 </head>

 <body>

 <h1>Number guessing game</h1>

 <p>Guess a number between 1 and 10 (incl.)</p>

 <label for="guessField">Enter a guess: </label>

 <input type="text" id="guessField">

 <button id="submit-btn" type="button">Submit guess</button>

 <p id="rightOrWrong"></p>

 <script>

 <!-- See next page for JavaScipt -->

 </script>

 </body>

</html>

https://github.com/pdst-lccs/lccs-javascript/blob/main/ch13_clientSideJS/EventExample5.html

JavaScript Manual for LCCS Teachers 230

The JavaScript code is fairly straightforward. A handler called checkGuess is attached to

the submit button. The handler is invoked when a ‘click’ event is fired. This happens only

when the user clicks the submit button.

Most of the processing is done inside the handler – the code reads the value entered by the

user and checks to see if it is the same as the computer’s secret number. The appropriate

feedback message (i.e. Congratulations or Wrong!) is then set as the text content on the

page’s paragraph element which is used to display the feedback. (Recall from the HTML on

the previous page that this ‘feedback paragraph’ is identified by the value rightOrWrong)

// pick a random number between 1 and 10

let secretNumber = Math.floor(Math.random() * 10) + 1;

// Setup an event handler for the submit button

const submitBtn = document.getElementById("submit-btn");

submitBtn.addEventListener('click', checkGuess);

// Handler - check the guess

function checkGuess() {

 const feedback = document.getElementById('rightOrWrong');

 const guessField = document.getElementById('guessField');

 // Read the user's guess

 let userGuess = Number(guessField.value);

 if (userGuess === secretNumber) {

 feedback.textContent = 'Congratulations!';

 } else {

 feedback.textContent = 'Wrong!';

 }

 guessField.value = ''; // blank the field

 guessField.focus(); // give it the focus

}

Suggest three enhancements that could be made to the ‘number guessing

game’ system before proceeding to the next breakout activity.

1.

2.

3.

https://github.com/pdst-lccs/lccs-javascript/blob/main/ch13_clientSideJS/EventExample5.html

JavaScript Manual for LCCS Teachers 231

BREAKOUT ACTIVITY 2

In the tasks that follow, you are required to make a number of enhancements to the ‘number

guessing game’ program presented as example 5 in the previous section. Each task builds

on the code from the previous - so for Task 1 you should start by making a copy of the code

from the last example (i.e. events example 5 – number guessing game)

Most of the code you need to complete each task is provided – you just need to figure out

what it does, how to use it and where to put it in order to complete the task.

Task 1

a) Add a checkbox to the page to display/hide the number that the user is trying to guess

i.e. the computer generated number which is stored in the variable secretNumber.

An example of how the checkbox should behave is shown below. The left hand side shows

the situation when the user clicks on the checkbox on - the secret number is displayed as

the text content of the checkbox’s label. The checkbox acts as a toggle so when the user

switches the checkbox off the secret number is hidden. This is depicted on the right.

JavaScript Manual for LCCS Teachers 232

b) Change the style property of the feedback message so that it is displayed in green if the

guess entered by the user is correct and red otherwise. These two scenarios are

illustrated below.

The code you need to complete this task is provided in a number of separate code blocks

shown below. All you have to do is figure out where to incorporate each block into your own

code base. (Remember your code base is the code for events example 5 from the previous

section.)

CODE BLOCK 1

 feedback.style.backgroundColor = 'red'; // in need of a home!

CODE BLOCK 2

function toggleNumber() {

 const computerNumber = document.getElementById('computerNumber');

 if (checkbox.checked) {

 computerNumber.style.visibility = 'visible';

 computerNumber.textContent = secretNumber;

 } else {

 computerNumber.style.visibility = 'hidden';

 }

}

CODE BLOCK 3

 <input id="showNumberCkBx" type="checkbox">

 <label id="computerNumber"></label>

CODE BLOCK 4

 feedback.style.backgroundColor = 'green'; // help – I’m lost!

CODE BLOCK 5

let checkbox = document.getElementById("showNumberCkBx");

checkbox.addEventListener('click', toggleNumber);

JavaScript Manual for LCCS Teachers 233

Task 2

For this task you are required to create a results section in your page. The purpose of the

results section is to display the following information:

a) A list of all the user’s previous guesses

b) A helpful message to tell the user whether their guess was too low, too high or just right

c) A statistic at the end with the total number of guesses (you will need to declare and

maintain a variable to keep track of the user’s guesses – call it guessCount)

The screenshots below show the required behaviour.

When the system starts it should look something like this.

Notice there has been a paragraph added with the text Previous Guesses:.

The user clicks on the checkbox to reveal the secret number (in this case 3). Now let’s say

the user enters two values - the first 2 is too low and the second 4 which is too high.

The user guesses 4 which is too low The user guesses 4 which is too high

Notice that the incorrect guesses are displayed in an unordered list underneath the previous

guesses paragraph.

JavaScript Manual for LCCS Teachers 234

Finally, when the user enters the correct number a screen similar to the one shown below is

displayed. Notice the last line shows the total number of guesses the user made.

The blocks of code you will need are provided below in no particular order – you need to

place them at the correct locations in the code resulting from Task 1. The solution for task 1

is available in the appendix.

CODE BLOCK 1

 <div id="results">

 <p id="lowOrHi"></p>

 <p>Previous Guesses:</p>

 <ul id="prevGuesses">

 <p id="stats"></p>

 </div>

Note: the position on the screen where the feedback messages are displayed may be

slightly enhanced by moving the paragraph placeholder for rightORWrong directly before

the lowOrHi paragraph (inside the div block) in this code block. That is ..

 <div>

 <p id="rightOrWrong"></p>

 <p id="lowOrHi"></p>

CODE BLOCK 2

 // Display each user's guess in the division for prevGuesses

 let unorderedList = document.getElementById("prevGuesses");

 let newListItem = document.createElement("li");

 newListItem.textContent = guessField.value;

 unorderedList.appendChild(newListItem);

JavaScript Manual for LCCS Teachers 235

CODE BLOCK 3

 // Display a helpful message to the user

 let helpfulMsgField = document.getElementById("lowOrHi");

 if (userGuess < secretNumber) {

 helpfulMsgField.textContent = 'Too low!' ;

 } else if (userGuess > secretNumber) {

 helpfulMsgField.textContent = 'Too high!';

 } else if (userGuess === secretNumber) {

 helpfulMsgField.textContent = 'Just right!';

 }

CODE BLOCK 4

function displayStats() {

 // Display the number of guesses

 let statsPara = document.getElementById("stats");

 statsPara.textContent = "You took "+guessCount+" guesses";

}

CODE BLOCK 5

 let guessCount = 0;

CODE BLOCK 6

 guessCount++;

CODE BLOCK 7

 displayStats(); // call the function to display the number of guesses

JavaScript Manual for LCCS Teachers 236

Task 3

Add ‘Game Over’ processing. For this task you are required to add a ‘New game’ button to

your page. The two screenshots below illustrate how the system should behave before and

after the button is clicked.

The first screen depicts a normal run of the game – the user has just guessed the correct

number on the third attempt. Notice that the New game button is enabled because the game

has ended.

Before the New game button is clicked

The next screen on the right displays what happens when the New game button is clicked –

the screen is cleared and the system returns to its initial state ready to play a new game.

After New game button is clicked

The code blocks you will need are provided below. All you need to do is arrange them into

the correct places. Remember to use the solution to the previous task as your code base.

CODE BLOCK 1

const newGameBtn = document.getElementById('newgame-btn');

newGameBtn.addEventListener('click', newGame);

JavaScript Manual for LCCS Teachers 237

CODE BLOCK 2

 <button id="newgame-btn" type="button">New game</button>

CODE BLOCK 3

function newGame() {

 secretNumber = Math.floor(Math.random() * 10) + 1;

 guessCount = 0;

 submitBtn.disabled = false;

 newGameBtn.disabled = true;

 document.getElementById('computerNumber').textContent = "";

 document.getElementById("showNumberCkBx").checked = false;

 document.getElementById('rightOrWrong').textContent = "";

 document.getElementById("lowOrHi").textContent = "";

 document.getElementById("prevGuesses").innerHTML = "";

 document.getElementById("stats").textContent = "";

}

CODE BLOCK 4

function gameOver() {

 submitBtn.disabled = true;

 newGameBtn.disabled = false;

 displayStats();

}

CODE BLOCK 5

 // Start a new game

 newGame(); // Task 3

CODE BLOCK 6

 gameOver(); // Task 3

Hint: You will need to include this final code block to call the gameOver function somewhere

inside the function checkGuess.

JavaScript Manual for LCCS Teachers 238

Task 4

In this task you will add two spin buttons to provide users with the ability to set a minimum

and maximum value for the secret number. The secret number generated by the program

will be between the minimum and maximum values as decided by the user.

You will need to change the prompt on the screen from this ..

Guess a number between 1 and 10 (incl.)

.... to this ...

Guess a number between min and and max (incl.)

The initial screen in the final system should look something like this.

The initial values of the Min and Max spin button have been set to 1 and 100 respectively.

When the mouse is floated over the spin buttons you will notice an up/down arrow appear to

its right hand side. This arrow can be used to scroll up and down through different numbers

in steps of 1. In this way the user can control the values for the minimum and maximum

values without having to use the keyboard (i.e. by using the mouse only).

The screenshot below shows what the screen would look like if the user had configured the

game to select a secret number in the range 25 to 43. The program generates a new secret

number every time the user changes the range. This ensures that the secret number will

always be within the required range.

JavaScript Manual for LCCS Teachers 239

The following code blocks contain all the code you will need in order to complete this task.

The HTML code is used to change the appearance of the page and the JavaScript code is

used to change the behaviour of the page.

Don’t forget that this code should be layered over the solution to the previous task.

CODE BLOCK 1

// Create a listener for the two spinners (the same one will do them both)

document.getElementById('low').addEventListener('change', setSecretNo);

document.getElementById('high').addEventListener('change', setSecretNo);

CODE BLOCK 2

 <div>

 <label for="low">Min: </label>

 <input id="low" type="number" min="1" max="100" step="1" value="1">

 <label for="high">Max: </label>

 <input id="high" type="number" min="1" max="100" step="1" value="100">

 </div>

CODE BLOCK 3

// Handler for the spinners

function setSecretNo() {

 minValue = Number(document.getElementById('low').value);

 maxValue = Number(document.getElementById('high').value);

 secretNumber = Math.floor(Math.random() * (maxValue - minValue +1)) + minValue;

 // update the secret number on the display

 document.getElementById('computerNumber').textContent = secretNumber;

}

CODE BLOCK 4

 // This code needs to be grafted in the function ‘newGame’

 //secretNumber = Math.floor(Math.random() * 10) + 1; // Commented out for task 4

 minValue = Number(document.getElementById('low').value);

 maxValue = Number(document.getElementById('high').value);

 secretNumber = Math.floor(Math.random() * (maxValue - minValue +1)) + minValue;

CODE BLOCK 5

 //let secretNumber = Math.floor(Math.random() * 10) + 1;

 let secretNumber; // Comment the preceding line and replaces with this

 let minValue, maxValue; // Task 4

JavaScript Manual for LCCS Teachers 240

Reflect on all the interactive tasks you just completed. Describe any

situation where you would have used a different approach to complete any

of the tasks? Are there any further enhancements you can think of making?

Suggest how you could adapt any of the exercises for use in your own LCCS

classroom.

JavaScript Manual for LCCS Teachers 241

Task 5 (Online Computer Aided Learning System, OCALS)

For this final task of the breakout session you are required to ‘webify’ the Computer Aided

Learning (CAL) system that you developed in breakout 1. We will brand the new system,

Online Computer Aided Learning System, or OCALS for short!

The requirement can be accomplished by grafting the code you have from ‘number guessing

game’ with the completed code from the first breakout. Before starting you should have a

think about what OCALS might look like when it is finished. You will need to plan and design

your solution carefully before starting to implement it using HTML/CSS and JavaScript code.

Use the design process diagram from the LCCS specification document and the questions

below to scaffold your thinking.

Start by scoping your system – what will it do? Put yourself in the position of the end-user.

What functionality would the typical end-user like to have? Use this to determine what’s in

and what’s out (and what’s in between). You will also need to consider your data flows –

what information is needed? What do I need to capture from the end-user? What data can

the system generate?

By this stage it may be a good idea to sketch up a few ideas for the user interface (the

screenshots shown below and on the next page might inspire some ideas – try to be

original!). What will the system look like to the end-user? Design some use cases - these

can be used as a basis for your test design. By now you should be ready to start low-level

design. What UI controls/widgets will you use? What events will need to handled by your

system? Which parts of your site will be static and which parts will be dynamic?

Once you have completed your requirements and design specifications you will be ready to

move on to implementation and testing phase of the project. Good luck!

JavaScript Manual for LCCS Teachers 242

Online Computer Aided Learning System (OALS)

Example user interfaces / Inspiration ideas

Example User Interface #1

Example User Interface #2

Example User Interface #3

JavaScript Manual for LCCS Teachers 243

BLANK PAGE

JavaScript Manual for LCCS Teachers 244

Suggested Solution to Breakout #2

Breakout #2: Task 1 (abridged) and Suggested Solution

a) Add a checkbox to the page to display/hide the number that the user is trying to guess

i.e. the computer generated number which is stored in the variable secretNumber.

b) Change the style property of the feedback message so that it is displayed in green if the

guess entered by the user is correct and red otherwise.

Recall that each solution is layered over the previous starting from the initial code base

provided as the solution to example 5 – the number guestting game. The code highlighted in

bold shows the additional code required for each task. We start with the HTML for task 1.

<!DOCTYPE html>

<html lang="en">

 <head>

 <title>Guess Game - Task 1 Solution</title>

 </head>

 <body>

 <h1>Number guessing game</h1>

 <p>Guess a number between 1 and 10 (incl.)</p>

 <label for="guessField">Enter a guess: </label>

 <input type="text" id="guessField">

 <button id="submit-btn" type="button">Submit guess</button>

 <p id="rightOrWrong"></p>

 <!-- Task 1 -->

 <input id="showNumberCkBx" type="checkbox">

 <label id="computerNumber"></label>

 <script>

 <!-- Copy the JavaScript code on the next page here -->

 </script>

 </body>

</html>

https://github.com/pdst-lccs/lccs-javascript/blob/main/ch14_Breakout2/task1Solution.html

JavaScript Manual for LCCS Teachers 245

The JavaScript code for task 1 is now shown. Again, remember that the code highlighted in

bold is the new code that was needed for this solution.

 <script>

 // pick a random number between 1 and 10

 let secretNumber = Math.floor(Math.random() * 10) + 1;

 // Setup an event handler for the submit button

 const submitBtn = document.getElementById("submit-btn");

 submitBtn.addEventListener('click', checkGuess);

 let checkbox = document.getElementById("showNumberCkBx"); // Task 1

 checkbox.addEventListener('click', toggleNumber); // Task 1

 // Handler - check the guess

 function checkGuess() {

 const feedback = document.getElementById('rightOrWrong');

 const guessField = document.getElementById('guessField');

 // Read the user's guess

 let userGuess = Number(guessField.value);

 if (userGuess === secretNumber) {

 feedback.textContent = 'Congratulations! You got it right!';

 feedback.style.backgroundColor = 'green'; // Task 1

 } else {

 feedback.textContent = 'Wrong!';

 feedback.style.backgroundColor = 'red'; // Task 1

 }

 guessField.value = ''; // blank the field

 guessField.focus(); // give it the focus

 }

 // Task #1

 function toggleNumber() {

 const computerNumber = document.getElementById('computerNumber');

 if (checkbox.checked) {

 computerNumber.style.visibility = 'visible';

 computerNumber.textContent = secretNumber;

 } else {

 computerNumber.style.visibility = 'hidden';

 }

 }

 </script>

https://github.com/pdst-lccs/lccs-javascript/blob/main/ch14_Breakout2/task1Solution.html

JavaScript Manual for LCCS Teachers 246

Breakout #2: Task 2 (abridged) and Suggested Solution

For this task you are required to create a results section in your page. The purpose of the

results section is to display the following information:

a) A list of all the user’s previous guesses

b) A helpful message to tell the user whether their guess was too low, too high or just right

c) A statistic at the end with the total number of guesses (you will need to declare and

maintain a variable to keep track of the user’s guesses – call it guessCount)

The HTML code is shown below.

<!DOCTYPE html>

<html lang="en">

 <head>

 <title>Guess Game - Task 2 Solution</title>

 </head>

 <body>

 <h1>Number guessing game</h1>

 <p>Guess a number between 1 and 10 (incl.)</p>

 <label for="guessField">Enter a guess: </label>

 <input type="text" id="guessField">

 <button id="submit-btn" type="button">Submit guess</button>

 <!-- Task 1 -->

 <input id="showNumberCkBx" type="checkbox">

 <label id="computerNumber"></label>

 <!-- Task 2 -->

 <div id="results">

 <p id="rightOrWrong"></p>

 <p id="lowOrHi"></p>

 <p>Previous Guesses:</p>

 <ul id="prevGuesses">

 <p id="stats"></p>

 </div>

 <!-- JavaScript -->

 <script>

 <!-- Copy the JavaScript code on the next page here -->

 </script>

 </body>

</html>

https://github.com/pdst-lccs/lccs-javascript/blob/main/ch14_Breakout2/task2Solution.html

JavaScript Manual for LCCS Teachers 247

The JavaScript solution for task 2 is shown here.

 <!-- JavaScript -->

 <script>

 // pick a random number between 1 and 10

 let secretNumber = Math.floor(Math.random() * 10) + 1;

 // Setup an event handler for the submit button

 const submitBtn = document.getElementById("submit-btn");

 submitBtn.addEventListener('click', checkGuess);

 let checkbox = document.getElementById("showNumberCkBx"); // Task 1

 checkbox.addEventListener('click', toggleNumber); // Task 1

 let guessCount = 0; // Task #2

 // Handler - check the guess

 function checkGuess() {

 const feedback = document.getElementById('rightOrWrong');

 const guessField = document.getElementById('guessField');

 // Read the user's guess

 let userGuess = Number(guessField.value);

 guessCount++; // Task 2

 if (userGuess === secretNumber) {

 feedback.textContent = 'Congratulations! You got it right!';

 feedback.style.backgroundColor = 'green'; // Task 1

 displayStats(); // Task 2

 } else {

 feedback.textContent = 'Wrong!';

 feedback.style.backgroundColor = 'red'; // Task 1

 }

 // Task #2

 // Display a helpful message to the user

 let helpfulMsgField = document.getElementById("lowOrHi");

 if (userGuess < secretNumber) {

 helpfulMsgField.textContent = 'Too low!' ;

 console.log("LOW");

 } else if (userGuess > secretNumber) {

 helpfulMsgField.textContent = 'Too high!';

 console.log("LOW");

 } else if (userGuess === secretNumber) {

 helpfulMsgField.textContent = 'Just right!';

 }

 // Task #2

 // Display each user's guess in the division for prevGuesses

 let unorderedList = document.getElementById("prevGuesses");

 let newListItem = document.createElement("li");

 newListItem.textContent = guessField.value;

 unorderedList.appendChild(newListItem);

JavaScript Manual for LCCS Teachers 248

 guessField.value = ''; // blank the field

 guessField.focus(); // give it the focus

 }

 // Task #2

 function displayStats() {

 // Display the number of guesses

 let statsPara = document.getElementById("stats");

 statsPara.textContent = "You took "+guessCount+" guesses";

 }

 // Task #1

 function toggleNumber() {

 const computerNumber = document.getElementById('computerNumber');

 if (checkbox.checked) {

 computerNumber.style.visibility = 'visible';

 computerNumber.textContent = secretNumber;

 } else {

 computerNumber.style.visibility = 'hidden';

 }

 }

 </script>

https://github.com/pdst-lccs/lccs-javascript/blob/main/ch14_Breakout2/task2Solution.html

JavaScript Manual for LCCS Teachers 249

Breakout #2: Task 3 (abridged) and Suggested Solution

Add ‘Game Over’ processing. For this task you are required to add a ‘New game’ button to

your page. The two screenshots below illustrate how the system should behave before and

after the button is clicked.

The HTML code is shown below.

<!DOCTYPE html>

<html lang="en">

 <head>

 <title>Guess Game - Task 3 Solution</title>

 </head>

 <body>

 <h1>Number guessing game</h1>

 <p>Guess a number between 1 and 10 (incl.)</p>

 <label for="guessField">Enter a guess: </label>

 <input type="text" id="guessField">

 <button id="submit-btn" type="button">Submit guess</button>

 <!-- Task 3 -->

 <button id="newgame-btn" type="button">New game</button>

 <!-- Task 1 -->

 <input id="showNumberCkBx" type="checkbox">

 <label id="computerNumber"></label>

 <!-- Task 2 -->

 <div id="results">

 <p id="rightOrWrong"></p>

 <p id="lowOrHi"></p>

 <p>Previous Guesses:</p>

 <ul id="prevGuesses">

 <p id="stats"></p>

 </div>

 <!-- JavaScript -->

 <script>

<!-- Copy the JavaScript code on the next page here -->

 </script>

 </body>

</html>

https://github.com/pdst-lccs/lccs-javascript/blob/main/ch14_Breakout2/task3Solution.html

JavaScript Manual for LCCS Teachers 250

The JavaScript solution for task 3 is shown here.

 <!-- JavaScript -->

 <script>

 // pick a random number between 1 and 10

 let secretNumber = Math.floor(Math.random() * 10) + 1;

 // Setup an event handler for the submit button

 const submitBtn = document.getElementById("submit-btn");

 submitBtn.addEventListener('click', checkGuess);

 const newGameBtn = document.getElementById('newgame-btn'); // Task 3

 newGameBtn.addEventListener('click', newGame); // Task 3

 let checkbox = document.getElementById("showNumberCkBx"); // Task 1

 checkbox.addEventListener('click', toggleNumber); // Task 1

 let guessCount = 0; // Task #2

 // Start a new game

 newGame(); // Task 3

 // Handler - check the guess

 function checkGuess() {

 const feedback = document.getElementById('rightOrWrong');

 const guessField = document.getElementById('guessField');

 // Read the user's guess

 let userGuess = Number(guessField.value);

 guessCount++; // Task 2

 if (userGuess === secretNumber) {

 feedback.textContent = 'Congratulations! You got it right!';

 feedback.style.backgroundColor = 'green'; // Task 1

 gameOver(); // Task 3

 //displayStats(); // Task 2 - commented out on task 3

 } else {

 feedback.textContent = 'Wrong!';

 feedback.style.backgroundColor = 'red'; // Task 1

 }

 // Task #2

 // Display a helpful message to the user

 let helpfulMsgField = document.getElementById("lowOrHi");

 if (userGuess < secretNumber) {

 helpfulMsgField.textContent = 'Too low!' ;

 } else if (userGuess > secretNumber) {

 helpfulMsgField.textContent = 'Too high!';

 } else if (userGuess === secretNumber) {

 helpfulMsgField.textContent = 'Just right!';

 }

JavaScript Manual for LCCS Teachers 251

 // Task #2

 // Display each user's guess in the division for prevGuesses

 let unorderedList = document.getElementById("prevGuesses");

 let newListItem = document.createElement("li");

 newListItem.textContent = guessField.value;

 unorderedList.appendChild(newListItem);

 guessField.value = ''; // blank the field

 guessField.focus(); // give it the focus

 }

 // Task #3

 function newGame() {

 secretNumber = Math.floor(Math.random() * 10) + 1;

 guessCount = 0;

 submitBtn.disabled = false;

 newGameBtn.disabled = true;

 document.getElementById('computerNumber').textContent = "";

 document.getElementById("showNumberCkBx").checked = false;

 document.getElementById('rightOrWrong').textContent = "";

 document.getElementById("lowOrHi").textContent = "";

 document.getElementById("prevGuesses").innerHTML = "";

 document.getElementById("stats").textContent = "";

 }

 // Task #3

 function gameOver() {

 submitBtn.disabled = true;

 newGameBtn.disabled = false;

 displayStats();

 }

 // Task #2

 function displayStats() {

 // Display the number of guesses

 let statsPara = document.getElementById("stats");

 statsPara.textContent = "You took "+guessCount+" guesses";

 }

 // Task #1

 function toggleNumber() {

 const computerNumber = document.getElementById('computerNumber');

 if (checkbox.checked) {

 computerNumber.style.visibility = 'visible';

 computerNumber.textContent = secretNumber;

 } else {

 computerNumber.style.visibility = 'hidden';

 }

 }

 </script>

https://github.com/pdst-lccs/lccs-javascript/blob/main/ch14_Breakout2/task3Solution.html

JavaScript Manual for LCCS Teachers 252

Breakout #2: Task 4 (abridged) and Suggested Solution

In this task you will add two spin buttons to provide users with the ability to set a minimum

and maximum value for the secret number. The secret number generated by the program

will be between the minimum and maximum values as decided by the user.

The HTML code is shown below.

<!DOCTYPE html>

<html lang="en">

 <head>

 <title>Guess Game - Task 4 Solution</title>

 </head>

 <body>

 <h1>Number guessing game</h1>

 <!-- Task 4 -->

 <!--p>Guess a number between min and max (incl.)</p-->

 <p>Guess a number between min and max (incl.)</p>

 <div>

 <label for="low">Min: </label>

 <input id="low" type="number" min="1" max="100" step="1" value="1">

 <label for="high">Max: </label>

 <input id="high" type="number" min="1" max="100" step="1" value="100">

 </div>

 <label for="guessField">Enter a guess: </label>

 <input type="text" id="guessField">

 <button id="submit-btn" type="button">Submit guess</button>

 <!-- Task 3 -->

 <button id="newgame-btn" type="button">New game</button>

 <!-- Task 1 -->

 <input id="showNumberCkBx" type="checkbox">

 <label id="computerNumber"></label>

 <!-- Task 2 -->

 <div id="results">

 <p id="rightOrWrong"></p>

 <p id="lowOrHi"></p>

 <p>Previous Guesses:</p>

 <ul id="prevGuesses">

 <p id="stats"></p>

 </div>

 <!-- JavaScript -->

 <script>

 <!-- Copy the JavaScript code on the next pages here -->

 </script>

 </body>

</html>

https://github.com/pdst-lccs/lccs-javascript/blob/main/ch14_Breakout2/task4Solution.html

JavaScript Manual for LCCS Teachers 253

The JavaScript solution for task 4 is shown here.

 <!-- JavaScript -->

 <script>

 // pick a random number between 1 and 10

 //let secretNumber = Math.floor(Math.random() * 10) + 1;

 let secretNumber; // Comment the preceding line and replaces with this

 let minValue, maxValue; // Task 4

 // Setup an event handler for the submit button

 const submitBtn = document.getElementById("submit-btn");

 submitBtn.addEventListener('click', checkGuess);

 const newGameBtn = document.getElementById('newgame-btn'); // Task 3

 newGameBtn.addEventListener('click', newGame); // Task 3

 let checkbox = document.getElementById("showNumberCkBx"); // Task 1

 checkbox.addEventListener('click', toggleNumber); // Task 1

 // Create a listener for the two spinners (the same one will do them both)

 document.getElementById('low').addEventListener('change', setSecretNo); // Task 4

 document.getElementById('high').addEventListener('change', setSecretNo); // Task 4

 let guessCount = 0; // Task #2

 // Start a new game

 newGame(); // Task 3

 // Handler - check the guess

 function checkGuess() {

 const feedback = document.getElementById('rightOrWrong');

 const guessField = document.getElementById('guessField');

 // Read the user's guess

 let userGuess = Number(guessField.value);

 guessCount++; // Task 2

 if (userGuess === secretNumber) {

 feedback.textContent = 'Congratulations! You got it right!';

 feedback.style.backgroundColor = 'green'; // Task 1

 gameOver(); // Task 3

 //displayStats(); // Task 2 - commented out on task 3

 } else {

 feedback.textContent = 'Wrong!';

 feedback.style.backgroundColor = 'red'; // Task 1

 }

 // Task #2

 // Display a helpful message to the user

 let helpfulMsgField = document.getElementById("lowOrHi");

 if (userGuess < secretNumber) {

 helpfulMsgField.textContent = 'Too low!' ;

 } else if (userGuess > secretNumber) {

JavaScript Manual for LCCS Teachers 254

 helpfulMsgField.textContent = 'Too high!';

 } else if (userGuess === secretNumber) {

 helpfulMsgField.textContent = 'Just right!';

 }

 // Task #2

 // Display each user's guess in the division for prevGuesses

 let unorderedList = document.getElementById("prevGuesses");

 let newListItem = document.createElement("li");

 newListItem.textContent = guessField.value;

 unorderedList.appendChild(newListItem);

 guessField.value = ''; // blank the field

 guessField.focus(); // give it the focus

 }

 // Task #3

 function newGame() {

 // Task 4

 //secretNumber = Math.floor(Math.random() * 10) + 1; // Commented out for

task 4

 minValue = Number(document.getElementById('low').value);

 maxValue = Number(document.getElementById('high').value);

 secretNumber = Math.floor(Math.random() * (maxValue - minValue +1)) +

minValue;

 guessCount = 0;

 submitBtn.disabled = false;

 newGameBtn.disabled = true;

 document.getElementById('computerNumber').textContent = "";

 document.getElementById("showNumberCkBx").checked = false;

 document.getElementById('rightOrWrong').textContent = "";

 document.getElementById("lowOrHi").textContent = "";

 document.getElementById("prevGuesses").innerHTML = "";

 document.getElementById("stats").textContent = "";

 }

 // Task #3

 function gameOver() {

 submitBtn.disabled = true;

 newGameBtn.disabled = false;

 displayStats();

 }

 // Task #2

 function displayStats() {

 // Display the number of guesses

 let statsPara = document.getElementById("stats");

 statsPara.textContent = "You took "+guessCount+" guesses";

 }

 // Task #1

JavaScript Manual for LCCS Teachers 255

 function toggleNumber() {

 const computerNumber = document.getElementById('computerNumber');

 if (checkbox.checked) {

 computerNumber.style.visibility = 'visible';

 computerNumber.textContent = secretNumber;

 } else {

 computerNumber.style.visibility = 'hidden';

 }

 }

 // Task #4

 // Handler for the spinners

 function setSecretNo() {

 minValue = Number(document.getElementById('low').value);

 maxValue = Number(document.getElementById('high').value);

 secretNumber = Math.floor(Math.random() * (maxValue - minValue +1)) +

minValue;

 // update the secret number on the display

 document.getElementById('computerNumber').textContent = secretNumber;

 }

 </script>

https://github.com/pdst-lccs/lccs-javascript/blob/main/ch14_Breakout2/task4Solution.html

JavaScript Manual for LCCS Teachers 256

Breakout #2: Task 5 (abridged) and Suggested Solution

For this final task of the breakout session you are required to ‘webify’ the Computer Aided

Learning (CAL) system that you developed in breakout 1. We will brand the new system,

Online Computer Aided Learning System, or OCALS for short!

We present two sample solutions – version 1 and version 2.

Version 1

The user interface for version 1 is illustrated below. As you can see the difficulty level and

the operation are selected from two separate list boxes. (These are created using the HTML

select element.)

The problem itself is generated

by the program in response to

the user clicking on the

Generate a problem button.

The user continues to enter an

answer until they get a correct

response. Every user response

(attempts) are displayed as list

items in an unordered list and

the total number of attempts is

displayed when the user enters

the correct response.

Recall from the initial requirements that the system displays a random message each time

the user enters their answer. Depending on whether the answer is correct or not, the

computer message will come from one of the two following lists.

Correct Messages: "Well done!", "Very good!", "Correct!", "Keep it up!", and "Nice work!"

Incorrect Messages "No! Please try again", "Wrong! Try once more", "Don't give up!", "No!

Keep trying", and "That's incorrect"

JavaScript Manual for LCCS Teachers 257

The HTML code for OCALS v1 is presented below.

<!DOCTYPE html>

<html lang="en">

 <head>

 <title>Online CAL V1</title>

 <!-- import the webpage's stylesheet -->

 <link rel="stylesheet" href="style.css">

 </head>

 <body>

 <h1>Online Computer Aided Learning V1</h1>

 <p>Select a difficulty level</p>

 <select id="difficultyLevel" size="2">

 <option selected value="easy">Easy (single digit)</option>

 <option value="hard">Hard (double digit)</option>

 </select>

 <p>Choose an operation</p>

 <select id="operation" size="4">

 <option selected>Addition</option>

 <option>Subtraction</option>

 <option>Multiplication</option>

 <option>Division</option>

 </select>

 <button id="generate-btn" type="button">Generate a problem</button>

 <p id="problem"></p>

 <label for="answerField">Enter your answer: </label>

 <input type="text" id="answerField">

 <button id="submit-btn" type="button">Submit answer</button>

 <div id="results">

 <p id="rightOrWrong"></p>

 <p>Previous Answers:</p>

 <ul id="prevAnswers">

 <p id="stats"></p>

 </div>

 <script>

 <!-- import the webpage's javascript file -->

 <script src="task5SolutionOCALSv1.js"></script>

 <!-- The source for task5SolutionOCALSv1.js is on the next pages -->

 </script>

 </body>

</html>

https://github.com/pdst-lccs/lccs-javascript/blob/main/ch14_Breakout2/task5SolutionOCALSv1.html

JavaScript Manual for LCCS Teachers 258

The JavaScript solution for OCALS v1 is shown here.

// Online Computer Aided Learning System (OCALS) v1

console.log("Welcome to OCALS v1");

// Setup an event handler for the difficultyLevel selection

const diffLevelSelection = document.getElementById("difficultyLevel");

diffLevelSelection.addEventListener('change', setDiffLevel);

// Setup an event handler for the operation selection

const operationSelection = document.getElementById("operation");

operationSelection.addEventListener('change', setOperation);

// Setup an event handler for the operation selection

const generateBtn = document.getElementById("generate-btn");

generateBtn.addEventListener('click', generateProblem);

generateBtn.disabled = false;

// Setup an event handler for the submit answer button

const submitBtn = document.getElementById("submit-btn");

submitBtn.addEventListener('click', checkAnswer);

submitBtn.disabled = true;

// Global variables

let difficultyLevel = 0, operation = 0, correctAnswer = 0;

let nrAttempts = 0; // used to store the number of attempts

// Declare two global arrays of messages

const correctMsgs = ["Well done!", "Very good!", "Correct!", "Keep it up!", "Nice

work!"];

const incorrectMsgs = ["No! Please try again", "Wrong! Try once more", "Don't give

up!", "No! Keep trying", "That's incorrect"];

// Handler for the difficulty level

function setDiffLevel() {

 console.log("setDiffLevel");

 difficultyLevel = document.getElementById("difficultyLevel").selectedIndex;

 console.log(difficultyLevel);

}

// Handler for the opertion

function setOperation() {

 console.log("setOperation");

 operation = document.getElementById("operation").selectedIndex;

 console.log(operation);

}

JavaScript Manual for LCCS Teachers 259

// Handler for the generate problem button

function generateProblem() {

 console.log("generateProblem");

 generateBtn.disabled = true;

 submitBtn.disabled = false;

 let n1, n2;

 if (difficultyLevel === 0) {

 // Generate 2 random numbers between 0 and 9 incl.

 n1 = Math.floor(Math.random() * 10); // 0 <= n1 < 10

 n2 = Math.floor(Math.random() * 10); // 0 <= n2 < 10

 } else { // assume diff level is 1

 // Generate 2 random numbers between 10 and 99 incl.

 n1 = Math.floor(Math.random() * 90) + 10; // 10 <= n1 < 100

 n2 = Math.floor(Math.random() * 90) + 10; // 10 <= n2 < 100

 }

 // Assign the operator

 let operator;

 if (operation === 0) {

 operator = "+";

 correctAnswer = n1 + n2;

 } else if (operation === 1) {

 operator = "-";

 correctAnswer = n1 - n2;

 } else if (operation === 2) {

 operator = "*";

 correctAnswer = n1 * n2;

 } else { // assume division is 3

 operator = "/";

 correctAnswer = n1 / n2;

 }

 let problemPara = document.getElementById("problem");

 let problemText = "What is "+String(n1)+" "+operator+" "+String(n2)+"?";

 problemPara.textContent = problemText;

 console.log(problemText);

 // Clear the results from the previous problem

 document.getElementById('rightOrWrong').textContent = "";

 document.getElementById("prevAnswers").innerHTML = "";

 document.getElementById("stats").textContent = "";

 nrAttempts = 0; // reset the number of attempts taken

 document.getElementById('answerField').focus();

}

// Handler - check the answer

function checkAnswer() {

 const feedback = document.getElementById('rightOrWrong');

 const answerField = document.getElementById('answerField');

JavaScript Manual for LCCS Teachers 260

 // Read the user's guess

 let userAnswer = Number(answerField.value);

 nrAttempts++;

 if (userAnswer === correctAnswer) {

 feedback.textContent = getRandomMsg(correctMsgs);

 feedback.style.backgroundColor = 'green';

 generateBtn.disabled = false;

 submitBtn.disabled = true;

 displayStats();

 } else {

 feedback.textContent = getRandomMsg(incorrectMsgs);

 feedback.style.backgroundColor = 'red';

 }

 // Display each user's guess in the division for prevGuesses

 let unorderedList = document.getElementById("prevAnswers");

 let newListItem = document.createElement("li");

 newListItem.textContent = answerField.value;

 unorderedList.appendChild(newListItem);

 answerField.value = ''; // blank the field

 answerField.focus(); // give it the focus

}

// A function that generates and displays a random message

function getRandomMsg(messages) {

 const r = Math.floor(Math.random() * messages.length);

 console.log(messages[r]);

 return(messages[r]);

} // end displayRandomMsg

// A function to display the final statistics

function displayStats(){

 let statsPara = document.getElementById("stats");

 let statsText = "You took "+nrAttempts+" attempts.";

 statsPara.textContent = statsText;

} // end displayStats

https://github.com/pdst-lccs/lccs-javascript/blob/main/ch14_Breakout2/task5SolutionOCALSv1.js

JavaScript Manual for LCCS Teachers 261

Version 2

This is what the user interface for version 2 looks like.

The user selects an operation from one of the options – Addition, Subtraction, Multiplicatio

and Division – shown in the radio group towards the top of the screen.

The difficulty level (easy/hard) is not explicitly set. Instead the user can control the range of

values the computer should use for each operand.

The screenshow above depicts a scenario where the user has selected Multiplication. The

first operand is in the range 1-100 and the range of the second operand has been set to 1-

12. The user has clicked on the Generate a problem button (which is then disabled) and the

computer generates and displays the problem – in this case, What is 96 * 5?

Four possible answers are presented using 4 radio buttons at the bottom of the screen.

When the user selects the correct answer - only one of the answers shown are correct! – the

Generate a problem button is (re)enabled and the user can continue.

The HTML and JavaScript code for this system are shown on the next pages.

JavaScript Manual for LCCS Teachers 262

Here is the HTML code for OCALS v2.

<!DOCTYPE html>

<html lang="en">

 <head>

 <title>Online CAL V2</title>

 <!-- import the webpage's stylesheet -->

 <link rel="stylesheet" href="style.css">

 </head>

 <body>

 <h1>Online Computer Aided Learning V2</h1>

 <p>Select an operation</p>

 <form id="opForm">

 <label><input type="radio" name="opForm" value="0" checked> Addition</label>

 <label><input type="radio" name="opForm" value="1"> Subtraction</label>

 <label><input type="radio" name="opForm" value="2"> Multiplication</label>

 <label><input type="radio" name="opForm" value="3"> Division</label>

 </form>

 <div>

 <p>Set the range of the 1st operand</p>

 <label for="low1">Min: </label>

 <input id="low1" type="number" min="1" max="100" step="1" value="1">

 <label for="high1">Max: </label>

 <input id="high1" type="number" min="1" max="100" step="1" value="100">

 </div>

 <div>

 <p>Set the range of the 2nd operand</p>

 <label for="low2">Min: </label>

 <input id="low2" type="number" min="1" max="100" step="1" value="1">

 <label for="high2">Max: </label>

 <input id="high2" type="number" min="1" max="100" step="1" value="100">

 </div>

 <div>

 <button id="generate-btn" type="button">Generate a problem</button>

 <p id="problem"></p>

 </div>

 <form id="resultForm">

 <label><input type="radio" name="resultForm" id="radio0" value="0"> </label>

 <label><input type="radio" name="resultForm" id="radio1" value="1"> </label>

 <label><input type="radio" name="resultForm" id="radio2" value="2"> </label>

 <label><input type="radio" name="resultForm" id="radio3" value="3"> </label>

 </form>

 <p id="feedback"></p>

 <script>

 <!-- import the webpage's javascript file -->

 <script src="task5SolutionOCALSv2.js"></script>

 <!-- The source for task5SolutionOCALSv2.js is on the next pages -->

 </script>

 </body>

</html>

https://github.com/pdst-lccs/lccs-javascript/blob/main/ch14_Breakout2/task5SolutionOCALSv2.html

JavaScript Manual for LCCS Teachers 263

The JavaScript solution for OCALS v2 is presented here.

// Online Computer Aided Learning System (OCALS) v2

console.log("Welcome to OCALS v3");

displayResultForm("none"); // Hide the results section

// Setup an event handler for the operation selection

const formCtrl = document.getElementById("opForm");

formCtrl.addEventListener('click', setOperation);

// Create a listener for the two spinners for the 1st number

document.getElementById('low1').addEventListener('change', setN1Range);

document.getElementById('high1').addEventListener('change', setN1Range);

// Create a listener for the two spinners for the 2nd number

document.getElementById('low2').addEventListener('change', setN2Range);

document.getElementById('high2').addEventListener('change', setN2Range);

// Setup an event handler for the operation selection

const generateBtn = document.getElementById("generate-btn");

generateBtn.addEventListener('click', generateProblem);

generateBtn.disabled = false;

// Setup an event handler for the operation selection

const resultForm = document.getElementById("resultForm");

resultForm.addEventListener('click', processResult);

// Global variables

const incorrectMsgs = ["No! Please try again", "Wrong! Try once more", "Don't give

up!", "No! Keep trying", "That's incorrect"];

let operation = 0; // Addition is the default

let correctBtnID = 0;

let minValue1 = 0, minValue2 = 0, maxValue1 = 100, maxValue2 = 100;

// Handler for the operation

function setOperation() {

 console.log("setOperation - radio clicked");

 let form = document.getElementById("opForm");

 operation = form.elements["opForm"].value;

 console.log(operation);

}

// Handler for min/max of operand 1

function setN1Range() {

 minValue1 = Number(document.getElementById('low1').value);

 maxValue1 = Number(document.getElementById('high1').value);

}

// Handler for min/max of operand 2

function setN2Range() {

 minValue2 = Number(document.getElementById('low2').value);

 maxValue2 = Number(document.getElementById('high2').value);

JavaScript Manual for LCCS Teachers 264

}

// Handler for the generate problem button

function generateProblem() {

 console.log("generateProblem");

 let correctAnswer = 0;

 generateBtn.disabled = true;

 let n1 = Math.floor(Math.random() * (maxValue1 - minValue1 +1)) + minValue1;

 let n2 = Math.floor(Math.random() * (maxValue2 - minValue2 +1)) + minValue2;

 // Assign the operator

 let operator;

 if (operation == 0) {

 operator = "+";

 correctAnswer = n1 + n2;

 } else if (operation == 1) {

 operator = "-";

 correctAnswer = n1 - n2;

 } else if (operation == 2) {

 operator = "*";

 correctAnswer = n1 * n2;

 } else { // assume division is 3

 operator = "/";

 correctAnswer = n1 / n2;

 }

 let problemPara = document.getElementById("problem");

 let problemText = "What is "+String(n1)+" "+operator+" "+String(n2)+"?";

 problemPara.textContent = problemText;

 console.log(problemText);

 displayResultForm("block"); // Show the results section

 // https://stackoverflow.com/questions/45259854/change-the-text-next-to-a-radio-

button-using-javascript

 // Dynamically set the content of the button's text node

 //document.getElementById('radio0').nextSibling.textContent = "ans1";

 //document.getElementById('radio1').nextSibling.textContent = "ans2";

 //document.getElementById('radio2').nextSibling.textContent = "ans3";

 //document.getElementById('radio3').nextSibling.textContent = "ans4";

 correctBtnID = Math.floor(Math.random() * 3); // a number between 0 and 3 incl

 for (let i=0; i<4; i++) {

 let radioID="radio"+i;

 if (i == correctBtnID) {

 document.getElementById(radioID).nextSibling.textContent =

String(correctAnswer);

 } else {

 let randomAnswer = Math.floor(Math.random() * 500) + 1;

 document.getElementById(radioID).nextSibling.textContent =

String(randomAnswer);

 }

 }

} // end generateProblem

JavaScript Manual for LCCS Teachers 265

function processResult() {

 const feedback = document.getElementById('feedback');

 const resultForm = document.getElementById("resultForm");

 let selectedBtnValue = resultForm.elements["resultForm"].value;

 console.log(selectedBtnValue); // undefined

 if (selectedBtnValue == correctBtnID) {

 console.log("Correct");

 displayResultForm("none"); // Hide the results section

 generateBtn.disabled = false; // Enable the Generate a problem button

 document.getElementById("problem").textContent = ""; // Clear the problem

 feedback.textContent = ""; // Clear the feedback

 document.getElementById("radio"+correctBtnID).checked = false;

 } else {

 console.log("Incorrect");

 feedback.textContent = getRandomMsg(incorrectMsgs);

 feedback.style.backgroundColor = 'red';

 }

} // processResult

// Show or hide the results section

function displayResultForm(displayStyle) {

 let resultForm = document.getElementById("resultForm");

 resultForm.style.display = displayStyle;

} // displayResultForm

// A function that generates and displays a random message

function getRandomMsg(messages) {

 const r = Math.floor(Math.random() * messages.length);

 console.log(messages[r]);

 return(messages[r]);

} // end displayRandomMsg

https://github.com/pdst-lccs/lccs-javascript/blob/main/ch14_Breakout2/task5SolutionOCALSv2.js

JavaScript Manual for LCCS Teachers 266

Style sheet for OCALS

The following style sheet was used in the two versions of OCALS just presented. Both

versions imported this from an external stylesheet file called style.css.

/* CSS files add styling rules to your content */

body {

 font-family: "Benton Sans", "Helvetica Neue", helvetica, arial, sans-serif;

 margin: 2em;

}

canvas {

display: block;

}

label {

 font-weight: bold;

}

div {

 padding-bottom: 20px;

}

input[type="text"] {

 padding: 5px;

 width: 150px;

}

JavaScript Manual for LCCS Teachers 267

BLANK PAGE

JavaScript Manual for LCCS Teachers 268

Appendix

JavaScript Keywords

The full list of JavaScript reserved words is shown in the table below:

await debugger false instanceof this void

break default finally let throw while

case delete for new true with

catch do function null try yield

class else if return typeof

const export import super undefined

continue extends in switch var

ECMAScript 2018 keywords

The following words should also be treated as reserved words (even though they are not)

true, false, let, null, undefined

boolean, byte, char, double, float, long,

arguments, eval, parseInt, parseFloat

Infinity, NaN, isNaN, isFinite,

Array, Boolean, Date, Error, Function, JSON, Math, Number,

Object, String

Notes:

1) You should avoid using any of these words as identifiers for variables and functions in

your JavaScript programs

2) The above list is by no means complete but should serve as a good guide.

3) If unsure, you should consult the Mozilla JavaScript Language reference

JavaScript Manual for LCCS Teachers 269

Arithmetic Operators

Compound Assignment Operators

Operator Precedence

JavaScript Manual for LCCS Teachers 270

Comparison Operators

Logical Operators and Truth Tables

Truth table for logical NOT

Truth table for logical AND Truth table for logical OR

JavaScript Manual for LCCS Teachers 271

Common Array Methods12

Method name Description

arrA.concat(arrB)
Returns a new array made up of the elements of arrA followed

by the elements of arrB.

arrA.indexOf(item)
Returns the index of the first occurrence of the value specified

by item in arrA. If the item is not found the method returns -1

arrA.lastIndexOf(item)

Starting from the end, returns the index of the first occurrence of

the value specified by item in arrA. If item is not found the

method returns -1

arrA.join([separator])
Returns all the elements of the array joined together as a string.

The default value of the optional separator is a comma.

arrA.push(items)
Appends one or more elements (as specified by items) to the

end of arrA and returns the new length of the array.

arrA.pop()
Removes the last element of arrA. Returns the element

removed or undefined if the array was empty

arrA.shift()
Removes the first element of arrA. Returns the element

removed or undefined if the array was empty

arrA.unshift(items)
Inserts one or more elements (as specified by items) to the start

of arrA and returns the new length of the array.

arrA.sort()
Sorts the elements of array in place and returns the sorted array

(in alphabetical order)

arrA.reverse()
Sorts the elements of array in place and returns the sorted array

(in alphabetical order)

arrA.slice([i1, [i2])

Returns a new array made up of the elements of arrA from i1

up to but not including i2. If i1 is not specified it is taken to be

zero; if i2 is not specified it is taken to be arrA.length. The

contents of the original array are unchanged.

arrA.splice(i, [n,

[items]])

Adds/replaces/remove elements from an array in place. i is the

starting index, n is the number of elements to remove and

items are the new elements.

Returns a new array with any removed elements. (If no

elements are removed an empty array is returned.)

12 https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array

JavaScript Manual for LCCS Teachers 272

Common Date Methods13

The following methods can be used for getting information from a date object d.

Method name Description

d.getDate()
Returns the day of the month (1-31) for the specified date according

to local time

d.getDay()
Returns the day of the week (0-6) for the specified date according to

local time.

d.getFullYear()
Returns the year (4 digits for 4-digit years) of the specified date

according to local time.

d.getHours() Returns the hour (0-23) in the specified date according to local time.

d.getMinutes()
Returns the minutes (0-59) in the specified date according to local

time.

d.getMonth() Returns the month (0-11) in the specified date according to local time.

d.getSeconds()
Returns the seconds (0-59) in the specified date according to local

time.

d.getTime()

Returns the numeric value of the specified date as the number of

milliseconds since January 1, 1970, 00:00:00 UTC (negative for prior

times).

13 https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Date

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Date/getDate
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Date/getDay
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Date/getFullYear
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Date/getHours
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Date/getMinutes
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Date/getMonth
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Date/getSeconds
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Date/getTime
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Date

JavaScript Manual for LCCS Teachers 273

Common Math Methods14

Method Description Examples Result

Math.round(x);
Returns x rounded up or

down to the nearest integer

Math.round(9.7); 10

Math.round(9.3); 9

Math.ceil(x);
Returns the nearest integer

greater than or equal to x

Math.ceil(9.7); 10

Math.ceil(9.3); 10

Math.floor(x);
Returns the nearest integer

less than or equal to x

Math.floor(9.7); 9

Math.floor(9.3); 9

Math.pow(x, y);
Returns x raised to the power

of y.

Math.pow(2,5); 32

Math.pow(5,2); 25

Math.sqrt(x); Returns the square root of x
Math.sqrt(25); 32

Math.sqrt(-25); NaN

Math.cbrt(x); Returns the cube root of x
Math.cbrt(64); 4

Math.cbrt(-64); -4

Math.abs(x);
Returns the absolute value of
x

Math.abs(25); 25

Math.abs(-25); 25

Math.max(x, …)
Returns the maximum of a list
of 1 or more numbers

Math.max(1,-2,-1); 1

Math.min(x, …)
Returns the minimum of a list
of 1 or more numbers

Math.min(1,-2,-1); -2

Some example uses of Math.random are given in the table below:

Example Description

Math.floor(Math.random() * 10);
Returns an integer r such that:

0 ≤ r < 10

Math.floor(Math.random() * 11);
Returns an integer r such that:

0 ≤ r ≤ 10

Math.floor(Math.random() * 10) + 1;
Returns an integer r such that:

1 <= r ≤ 10

14 https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math

JavaScript Manual for LCCS Teachers 274

Common Number Methods15

Method name Description

Number.isNaN(x)

Returns true if the given value is NaN and its type is

Number; otherwise, false.

Number.isNaN("Joe") false

Number.isNaN("999") false

Number.isNaN(999) false

Number.isNaN(9.99) false

Number.isNaN(999/0) false

Number.isNaN(Infinity) false

Number.isNaN(NaN) true

Number.isFinite(x)

Returns true if the number passed in is a finite number;

false otherwise

Number.isFinite(“Joe”) false

Number.isFinite(“999”) false

Number.isFinite(999) true

Number.isFinite(9.99) true

Number.isFinite(999/0) false

Number.isFinite(Infinity) false

Number.isFinite(NaN) false

Number.isInteger(x)

Returns true if the number passed in is an integer (or a

decimal number that can be represented as an integer

(e.g. 2.0); false otherwise

Number.parseFloat(value)

Returns a floating point number parsed from value. If the

value cannot be converted to a number, NaN is returned

This method has the same functionality as the global

parseFloat() function:

Number.parseInt(value,

[base])

Returns an integer parsed from value in the base

provided. If value cannot be converted to a number, NaN

is returned. This method has the same functionality as the

global parseInt() function:

15 https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number/isNaN
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/NaN
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number/isFinite
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number/isFinite
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number/parseFloat
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/NaN
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number/parseInt
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number/parseInt
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/NaN
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number

JavaScript Manual for LCCS Teachers 275

The following methods work on any numeric expression x.

Method name Description

x.toExponential()
Returns a string representation of x in exponential notation

19.64738.toExponential() 1.964738e+1

x.toFixed(len)

Returns a string representation of x with len digits after the

decimal point

19.64738.toFixed() 20

19.64738.toFixed(1) 19.6

19.64738.toFixed(2) 19.65

19.64738.toFixed(3) 19.647

x.toPrecision(len)

Returns a string representation of x rounded to len significant

digits

19.64738.toPrecision(0) 19.64738

19.64738.toPrecision(2) 20

19.64738.toPrecision(4) 19.65

19.64738.toPrecision(6) 19.6474

JavaScript Manual for LCCS Teachers 276

Common String Methods16

Method name Description

strA.concat(strB)
Returns a new string made up of the characters of strA

followed by the characters of strB.

str.charAt(index)
Returns a new string made up of the character at the specified

index in str (or an empty string if index is out of bounds)

str.charCodeAt(index)
Returns the Unicode code of the character at the specified index

in str (or NaN if index is out of bounds)

str.toUpperCase()
Returns a new string with all the characters of str converted to

upper case

str.toLowerCase()
Returns a new string with all the characters of str converted to

lower case

str.indexOf(item

[,fromIndex])

Returns the index of the first occurrence of the value specified

by item in str. Unless fromIndex is specified the search

starts at index zero. If item is not found the method returns -1

str.lastIndexOf(item

[,fromIndex])

Starting from the end (or at fromIndex) and working

backwards, this method returns the index of the first occurrence

of the value specified by item in str. If item is not found the

method returns -1

str.slice([i1, [i2])

Returns a new string made up of the characters of str from i1

up to but not including i2. If i1 is not specified it is taken to be

zero; if i2 is not specified it is taken to be str.length. The

contents of the original string are unchanged.

str.replace(old, new) Replaces all occurrences of old in str with new.

str.split([separator]) Returns an array of strings split at the point denoted by the

separator

str.trim()

Creates a new string based on str with leading and trailing

whitespaces removed. Note trimStart() removes only

leading whitespaces and trimEnd() removes only trailing

whitespaces

16 https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String

JavaScript Manual for LCCS Teachers 277

References

Websites

Mozilla
https://developer.mozilla.org/en-US/docs/Web/JavaScript

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference

Web Demystified
https://www.youtube.com/playlist?list=PLo3w8EB99pqLEopnunz-

dOOBJ8t-Wgt2g

W3Schools https://www.w3schools.com/js/default.asp

TutorialsPoint https://www.tutorialspoint.com/javascript/

JavaScript.info https://javascript.info/js

Douglas Crockford’s

JavaScript
http://crockford.com/javascript/

Oracle https://developer.oracle.com/javascript

geeksforgeeks https://www.geeksforgeeks.org/javascript-tutorial/

edX JavaScript MOOC https://courses.edx.org/courses/course-

v1:W3Cx+JS.0x+3T2018/course/

Glitch https://glitch.com/

ECMAScript 2018

Language Specification

https://www.ecma-international.org/publications/files/ECMA-

ST/Ecma-262.pdf

Books/Notes

1) JavaScript The Definitive Guide, David Flanagan, O’Reilly, 2011

2) Heads First JavaScript Programming, Eric Freeman and Elisabeth Robson, O’Reilly,

2014 (Companion website: https://www.wickedlysmart.com/hfjs/)

3) JavaScript and jQuery, Jon Duckett, Wiley and Sons, Inc. 2014

4) Eloquent JavaScript, Marijn Haverbeke, no starch press, 2019

5) Many of the common student misconceptions are taken from “Misconceptions and the

Beginner Programmer” by Juha Sorva which appears as Chapter 13 in Computer

Science Education, Perspectives on Teaching and Learning in School, edited by

Sentence, Barendsen, and Schulte, Bloomsbury, 2018.

6) Many of the teacher tips are taken from “Teaching Programming” by Michael E.

Caspersen which appears as Chapter 9 in Computer Science Education Perspectives on

Teaching and Learning in School, edited by Sentence, Barendsen, and Schulte,

Bloomsbury, 2018.

7) Professional Notes on Programming, Teaching and Learning, Joe English.

https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference
https://www.youtube.com/watch?v=O_GWbkXIqEY&list=PLo3w8EB99pqLEopnunz-dOOBJ8t-Wgt2g
https://www.youtube.com/playlist?list=PLo3w8EB99pqLEopnunz-dOOBJ8t-Wgt2g
https://www.youtube.com/playlist?list=PLo3w8EB99pqLEopnunz-dOOBJ8t-Wgt2g
https://www.w3schools.com/js/default.asp
https://www.tutorialspoint.com/javascript/
https://javascript.info/js
http://crockford.com/javascript/
https://developer.oracle.com/javascript
https://www.geeksforgeeks.org/javascript-tutorial/
https://courses.edx.org/courses/course-v1:W3Cx+JS.0x+3T2018/course/
https://courses.edx.org/courses/course-v1:W3Cx+JS.0x+3T2018/course/
https://glitch.com/
https://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf
https://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf
https://www.wickedlysmart.com/hfjs/

JavaScript Manual for LCCS Teachers 278

BLANK PAGE

JavaScript Manual for LCCS Teachers 279

BLANK PAGE

JavaScript Manual for LCCS Teachers 280

BLANK PAGE

