PDST

Professional Development | An tSeirbhis um Fhorbairt
Service for Teachers Ghairmiwil do Mhdinteoiri

wWww. pdst.ie

>-®-00m -0 -
@ « ab - - * =

© DO RAD DDA O
© .k -
o
o-«0co0
kO - O -
- o
© SO aa
- =
[=
“P NS b= e W
“rd o O -n
- . W

“-OsOwD

- -
O - a Ok
—aw
O -
\- 00 + 0D

fo-
= &
.

LEAVING CERTIFICATE
COMPUTER SCIENCE

Fundamental Skills

Development
Python

PDSTO @ python

Python Programming

A Manual for Teachers

of

Leaving Certificate Computer Science

@ ® @ | © PDST 2020

This work is made available under the Creative Commons Share Alike 3.0 Licence
https://creativecommons.org/licenses/by-sa/3.0/. You may use and re-use this material
(not including images and logos) free of charge in any format or medium, under the
terms of the Creative Commons Attribution Share Alike Licence.

Please cite as: PDSIeaving Certificate Computer Sciene2 0 Python Workshofublin, 2020

Python Programming: A Manual for Teachers of Leaving Certificate Computer Science Pageii

PDST\Q @ python

Table of Contents

Section 17 Getting Started 1
Hell o Worl d eéééeéeééeeééeeééeecééeeée2
Language Syntaxé ¢ e e e e e e ééééééeceeeeeeéeé -3
Basic Python Syntax éééeéééeéeéééeééeéeh
Escape Sequencesé é é e é ééeéeééeééeéeééeeééeéeé. .8
FIl ow of Control eéééeééeeééeeééeeéecll
Programming Exercises ééééééeeeeeéeéclz
BREAKOUT ACTI VI TIES éééeéeééeeééeéeéeéels
Section 2171 Data, Variables, Assignments and Expressions 23
Introductioné é e ééeééeéééeééeeééeeééececée. 24
Variable Syntax ééééééééceeeéeéeéééé26
Dat atypes and Operations éééééeééé29
Program Tracing éééeééeéeéeéeéeéeéeéecil
Input-Process-Outputé e € € € € ééééééeeeeéeéeééééee. . 34
More Builtin Functionsé ée ¢ é é e éééeéeééeééeeééeeéeé 40
The Remainder Operator (%) ééééeéé4l
Programming Exercises éeééeééeééeéeéeéeéeds
Running Totals éééééééééceeéeéeééééas
I ntroducing Random Numbers ééééeeééca7
Addi ti onal Notes ¢€écebécctécecéceceeéce éeé 49
BREAKOUT ACTI VI TIES ééééééééeéeéeéeéeéhl
Section 371 Strings 63
I ntroduction éééééeéecééeéeéeéeéeéectd
String Indexing ééééeééeééeéeééeécéceébb
String Slicing éééééééeéeéeéeéééééeeetT0
String Additonand Mu | t i pl i cation éééééééééeerl
String Formatting ééééeééeéecééeécéeécra
Built-i n String Commands ééééeééeééeééeéée 76
Coding Systems ééééééeecéeéeéeéééééeeeett
Python Programming: A Manual for Teachers of Leaving Certificate Computer Science Pageiii

PDST\Q @ python

7

(7))

(¢]

(7))

D
D
D
D
D
D
D
D
D
D
(¢}

Programming Exerci
String Methods é é é é € é € é é
Addi tional Notes
BREAKOUT ACTI VI T

D

c M
@
S5
o M
® O
722)
-~ O
D

D

D

D

M-
M-
M-
M-

A ¢

m — o
nw n o
(9]

[] (O
-
-
-
-
-
-
-
-
(9]
(9]
(9]
(9]

Section 4171 Lists

-
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N

Il ntroduction é¢éé
é

(9]
-
(0]
(0]
(0]
(0]
(0]
(0]
-
(0]
(0]
(0]
-
-
-
-
(0]

Creating Lists

o

>

")

(9]

D~
D~
D~
D~
D~
D~
D~
-
-
-
-
-

CommonLi st Oper at

-
(0]

-
(0]

(0]

(0]

-
-
-
-
-
-
-
-
-
-
-
-

List I ndexing &

D~
¢}

¢}

¢}

¢}

¢}

D~
D~
D~
D~
D~
D~
D~
D~
D~
D~
D~

List Slicing ¢éé
Li st Met hods ¢é¢éé

(¢
(¢
D
D
D
D
D
D
- O D
D
D
D
(O
D
D
(O
D
(O

Two More String Methods (split and splitlines
BREAKOUTACTI VI TI ES é€ééeéééé

D~
-
-
(0]
-
-
(0]
-
(0]
m

79

. 80

83
85

Section 517 Programming Logic 120
I ntroduction éééééééeééeééceééeeéeéeéecl2l
Hangman! ¢ééééeééeéeéeeééeéeéeecééeeééel2z
Bool ean Expressions ééééééeéeceeéeéeééls
The GuessingGameéeé é e é e ééeéeéeéeéeéeéeéeée 128
Selection (if, else, elif) €ééeééeéeéeéeéeéeée 129
BREAKOUT ACTIVITIES (selection) é¢138
Iteration (for, while) €éééeéeéeéeéeéeéecéeeée 141
BREAKOUT ACTIVITIES (iteration) 160
Section 6 7 Modular Programming Using Functions 168
I ntroduction éééeéééeeééeééeeééeeééecld9
Basic Function Syntax éééééeéeéeééééclr7
Function Parameters and Argument s 182
Function Return Values éééee. é é 187
ExamplesandEx er ci ses éééé. .. éééeéeééééééla
Bool ean Functions éeéeéée €Eeéeéééélos
Python Programming: A Manual for Teachers of Leaving Certificate Computer Science Pageiv

PDST\Q @ python

Using Functions to Validate Data 199

//////////

Programming Exéécisesdéedéedeécéeéeéc?0l

""""""""""

Recursion éééeéeé. .. ééeeécéeceécéeéeeéé205

//////////////////

BREAKOUT ACTIVITY 6.1 (ATM System,)?214
BREAKOUT ACTIVITY 6.2 (Summing Nu1224
BREAKOUT ACTIVITY 6.3 (Turtle Gr aphi cs) ééeééeéeeéeeéeé 228
BREAKOUT ACTIVITY 6.4 (Check Digi 1234

Section 71 Dictionaries 242

,,,,,,,,,,,,,,,,,,

I ntroduction éééeéeééeeééeeéeeééeéeée243
Dictionary Definitionsi s o me exampl es €eéééééééé 244
Creating Dictionariesi synt ax ééeééééeéééeéééeéée 247
I ndexing Dictionaries éeéééeéeéeéeée249
Adding, Changing and Del eting Dici1255

///////////////

Programming Exercises 7.1 .6 é é . . . éé e e éééééééééeéc€263

/////

I terating over dictionaries éeeéeéceée268

Dictionaries and Lists éééeéééeeéeéé2271
BREAKOUT ACTIVITY 7.1 (Frequency (273

Appendices 280
Appendix A: PythonKeywords é é ¢ é ¢ é e ééeééeééeééeéeé. . 281
Appendix B: Python Built-in Functionsé é ¢ ¢ ¢ ¢ é é é é é e e é é . . 281
Appendix C: Python Assignment Operatorsé é é é é € € € é € é é é . 282
Appendix D: Python Arithmetic Operatorsé e é é e ¢ ée e éée e é 282
Appendix E: Python Relational Operatorsé é e e é e e ééeééee 282
Appendix F: Truth Tables for not, and,andoré ¢ ¢ ¢ ¢ ¢ ¢ é é é é é . 283

Appendix G: Sample Solutions to Selected Problems é é é € € é é é é 284

Python Programming: A Manual for Teachers of Leaving Certificate Computer Science Pagev

PDST\Q @ python

Manual Overview

The purpose of this manual is to provide Leaving Certificate Computer Science (LCCS)
teachers with an enhanced knowledge of the Python programming language thereby
enabling them to independently improve their own programming skills.

Although the manual will serve as support material for teachers who attend the Python Skills
Workshops which are a key component in our two-year CPD programme for LCCS teachers,
it is envisaged that its real value will only come into play in the weeks and months after the
workshops have been delivered. Beyond these workshops, the manual may be used as a
basic language reference for Python, but more importantly, as a teaching resource that
might be used to promote in teachers, a constructivist pedagogic orientation towards the

planning and teaching of Python in the LCCS classroom.

The manual itself is divided into seven sections as follows:

- sections 1 and 2 cover basic, beginner programming concepts such as program
execution, flow of control, simple datatypes, variables, assignments and expressions

- sections 3 and 4 cover the two datatypes - strings and lists I and associated operations

- section 5 covers programming logic 1 specifically, Boolean expressions, selection and
iteration

- sections 6 and 7 cover more advanced Python programming topics such as functions

and dictionaries

Of course there is much more to Python than the material covered in this manual. Among
the more notable topics that are not explicitly addressed are, object-oriented programming
and classes, list comprehensions and exceptions. That said, every effort has been made to
ensure that the content contained here is adequate in order to mediate LCCS in the

classroom.

Throughout the manual there are lots of examples and related exercises. Readers will find it
helpful if they read (and try) the examples before attempting the exercises. The source code
from most of the examples are available to download from the PDST GitHub repository

(https://github.com/pdstliccs/Iccspython) and links to sample solutions for many of the

programming exercises as are available at the end of the manual.

Python Programming: A Manual for Teachers of Leaving Certificate Computer Science Pagevi

https://github.com/pdst-lccs/lccs-python

PDST\Q @ python

A high-level overview of the content of this manual is presented below.

Section 17 Getting Started

The aim of this section is to get readers up and running. By the end of this section
participants should have a basic understanding of program execution, sequential processing,
strings, escape sequences and the importance of language syntax. Participants will have the
opportunity to write and modify simple programs. The section concludes with a practical
lab/breakout session which introduces turtle graphics and games programming using the

pygame library.

Section 27 Data, Variables, Assignments and Expressions

This section will provide participants with a broad overview of the use of variables,

assignments and expressions. Participants will have the opportunity to learn how to initialise

simple variables as well as use an assignment statement to change its value. The

importance of data and datatype is made clear. Arithmetic expressions and the input

command are introduced. Participants learn how to apply these concepts through program

tracing, testing, the use of the remainder (modulus) operator, running totals and random

numbers. The section concludes with a practical lab/breakout session which as well as

building on some of the O6projectsd started in Se

operations.

Section 31 Strings

In this section we will cover strings T basic sequence operations such as concatenation,
multiplication, indexing and slicing will be explained. Example programs will extend thinking
on coding systems and ciphers, and draw on the use the use of built-in functions - ord and
chr . String specific methods and formatting will also be explained. Participants will be given

a hands-on tour of the official online Python reference at https://docs.python.org/3/. The

section concludes with a practical lab/breakout session where participants will be given an

opportunity to write programs to generate web pages and analyse text from live RSS feeds.

Section 47 Lists

The aim of this section is to extend participants knowledge of sequences through the
concept of lists. Motivation is provided through a discussion on the many real-world
applications of lists. List construction, indexing and slicing are explored in greater detail. The
section describes the most common list specific methods and how to use them. Examples of

how to use split and splitlines to generate lists are provided. The breakout activities

Python Programming: A Manual for Teachers of Leaving Certificate Computer Science Pagevii

https://docs.python.org/3/

PDST\Q @ python

at the end of this section includes the use of lists to construct random sentences, further
statistical analysis of data read in from
use lists as a basis for giving directions to a graphic turtle object.

Section 57 Programming Logic (selection/conditions and iteration/loops)

This section explains the syntax and semantics of a number of programming constructs such
asif ,elif ,else ,while andfor statements. The emphasis throughout is on application
i.e. recognising situations where it is more appropriate to one of these control structures over
the other. Many of the examples are layered, based on a guessing game program. The
section concludes with a breakout session where participants will be able to consolidate their
learning and further develop their project work from the previous breakout sessions. The use

of plotly to present data in graphical format will also be introduced.

Section 6 i Modular Programming using Functions

The purpose of this section of the manual is to explain how functions can be used to
organise programs into logically related units of code. The architecture of a typical Python
program is presented and user-defined function are distinguished from built-in and library
functions. The syntax and semantics for defining and calling functions is explained, as is the
use of arguments/parameters to pass information into functions and return values to pass
information out of functions. The examples build on the programming concepts covered in
earlier sections and cover topics such as temperature/distance conversions, compound
interest/future value calculations, and maximum values. The use of Boolean functions to
perform tests such as to determine whether a number is prime or a given year a leap as well
as to validate data is explained. The chapter contains many programming exercises
designed to elicit the use of functions and structured programming and the topic of recursion
is also explored in some detail. The section concludes with a number of practical

lab/breakout session which can be adapted for use in the LCCS classroom.

Section 71 Dictionaries

The purpose of this chapter is to provide a full overview of the dictionary data structure.
Particular emphasis is placed on discussing the similarities and differences between lists
and dictionaries. The final breakout session i based on frequency counting i is designed to
elicit the computational thinking skills such as abstraction, pattern recognition,

decomposition and algorithmic thinking.

Python Programming: A Manual for Teachers of Leaving Certificate Computer Science Pageviii

PDSTO @ python

Conventions

To help with navigation through this manual, the following conventions are used:
V lItalics are used to highlight important new words and phrases defined
V Courier New fontis used to denote Python code such as keywords, commands and

variable names

The icons illustrated below are used to highlight different types of information throughout this

manual.

Space to answer questions using pen and paper.

A Python syntax rule.

Key technical point. A specific piece of information relating to some

aspect of programming.
Experiment. An opportunity to change code and see what happens.

a Programming exercises. An opportunity for individuals/pairs to

practice their Python programming skills

Breakout Group Work. At the end of every section, readers will work
on a number of themed projects relevant to that section.

Reflection log. A space for the reader to reflect on their own learning

and record their thoughts.

Meet octocat! This is the GitHub integration symbol. Throughout this

manual you will notice this symbol appears along with the example
Q code. When you click on the octocat you will be directed to the source

code on GitHub. Readers are recommended to copy the code from

GitHub to their preferred Integrated Development Environment (IDE).

) STUDENT TIP
print ("Hellc World™) .]]
Practice! Practice! Practice!
Blocks like the one shown above contain Boxes like these contain key messages to
example Python code pass on to novice programming students.

Python Programming: A Manual for Teachers of Leaving Certificate Computer Science Pageix

PDS':\'Q @ python

Section 1

Getting Started

Python Programming: A Manual for Teachers of Leaving Certificate Computer Science Pagel

PDSTO @ python

Installation and Setup

All of the examples in this manual were tested using Python 3.6.4. A standard installation of
Python 3.x and IDLE should be sufficient to run most of the examples and complete the
exercises in this manual. However, for some examples/exercises it will be necessary to

install third party libraries such as pygame and plotly

Hello World

From your IDE create a new file (File -> New File).

Key in (or copy+paste from GitHub T see Key Point) [pri_nt {("Hello Wc:rld"]%=
the Python statement exactly as it appears here:

KEY POINT: Instead of keying in this code you could click on the octocat and
your browser will direct you to the GitHub repository with this source file. From

this window you can select and copy the code and then paste it into your IDE.

Save the file (File -> Save) and press F5 to run.

If you see the text Hello World displayed in the shell window congratulations 7 you are up

and running. The output of the program is displayed in the shell window (output console).

Throughout this manual we will be creating new files, typing in or downloading the example

Python code provided. The aim is to get to the point where we can write our own code.

As teachers we should keep in mind that learning to program for the first time can be tricky 1
there can be lots of stuff going on at the same time, and understanding the syntax of Python
can often seem to be more important than the real purpose of programming which is to

automate solutions to well defined problems.

The sooner students overcome the initial syntax barrier, the sooner they can focus on the
skill of problem solving and specifically the skill of using the features of Python to solve

problems.

Teachers should continually emphasise to novice programmers that Python is just a tool,

and the key skill lies in its application to solve problems.

Python Programming: A Manual for Teachers of Leaving Certificate Computer Science Page2

https://github.com/pdst-lccs/lccs-python/blob/master/Section 1 - Getting Started/print demo - hello world.py

PDs'::Q @ python

Another point well worth getting across to novice programmers at an early stage is the

difference between programmers and end-users.

U Programmers usually work as part of a team. They write and test the code that makes up
a computer system. Student programmers should be encouraged to bear the needs of
the end-user in mind i.e. see the system from the perspective of the end-user.

U An end-user is the person (or organisation) for whom a software system is developed.
End-users are the customers and, very often, do not know how to program.

Language Syntax

Most of us are already aware that natural languages such as English, French, German,
Polish etc. have their own rules. These rules make up the language grammar. The syntax of
a language is that part of the grammar which defines how sentences are constructed |
syntax is mostly concerned with legitimate words, symbols and the order in which they are

used.

In a similar way, all programming languages (e.g. Python, Java, JavaScript, C++, PHP, Perl

etc.) have their own syntax i this is called the language syntax.

One i mportant aspect of Pythondés syntax is its

Python understands.

Words can be keywords or commands. The | ist of

T only some of these will be needed for LCCS.

Fal se break else if not while
None class except import for with
True continue f inally in pass yield
and def for is raise

as del from lambda return

assert elif global nonlocal try

Python 3.6.2 keywords

Programmers can add t odefhindthemowdwordg.ocabul ary by

Python Programming: A Manual for Teachers of Leaving Certificate Computer Science Page3

PDSTO @ python

The most common kinds of symbols in Python are operators i these can be arithmetic or

relational.

Python also understands white spaces (e.g. spaces, tabs, newlines), numbers and strings
(anything enclosed in quotation marks) i more on these later.

All programs must adhere to the syntax of the programming language in which they are
written. When a program does not conform

syntax error. Such programs are said to be syntactically incorrect.

When you try to run a program that has a syntax error, Python displays a syntax error

message.

Comments are a way to tell Python to ignore syntax. They are used by programmers to
improve the readability of their code for the benefit of other programmers. Comments in
Python start with the hash character, # , and extend to the end of the physical line. When

Python comes across the hash character it ignores the rest of the text on that line

Reflection

Reflect on what you have learned about Python so far.

Use the space below to write five things that Python understands.

t

Python Programming: A Manual for Teachers of Leaving Certificate Computer Science Page4

(0]

he

PDST @ python

Basic Python Syntax

We will now take a look at some of the basic syntax rules of Python and illustrate what
happens when these rules are broken.

Syntax Check #1:
Python is case sensitive. This means that Python treats upper and lower case letters

differently. For example, Python understands print but does not understand Print

Try running the following:

Print("Hello World")

You will see a message like this:

Traceback (most recent call last):
File "C:/PD5ST/Pyvthon Workshop/src/hellol.py™, line 1, in <module>
Print ("Hello World™)
HNameError: name "Print' is not defined
This is Pythondés way of telling the progr

Python keywords and commands must all be typed in lower case.

Experiment! / STUDENT TIP \

)) Students should be
Try the following line. encouraged from an early

Make some changes - what happens? stage to learn how to deal

with syntax errors. One way

to build student confidence
is to get students to fix

o - syntactically incorrect code
PRINT ("Hello World") (and even deliberately

create and fix their own
\ syntax errors). /

,
/ What did you learn?
°

Python Programming: A Manual for Teachers of Leaving Certificate Computer Science Pageb

@ python

Syntax Check #2:

Use opening and closing brackets (parentheses) after the print

want to display output. For every opening parenthesis there ne
closing parenthesis.

Try running the following:
print "Hello World")

You will see a syntax error displayed in a message box like the one shown below because

the opening parenthesis is missing.

command when you

eds to be a matching

[# syntaxError =
Missing parentheses in call to "print’. Did you mean
print("Hella Waorld")?

Experiment!
Try each of the following 3 lines separately.

print ("Hello World" print "Hello World"

print"Hello World"

g
/ What did you learn?
[]

What happens if you put a space either side of the brackets?

Python Programming: A Manual for Teachers of Leaving Certificate Computer Science

Page6

PDSTO @ python

Syntax Check #3:
When you want to display text using the print command, the text must to be enclosed
inside matching quotation marks. If either, or both, quotation marks are missing, a syntax

error message is displayed.

Experiment: Try each of the following lines separately.

print (Hello World)

print ("Hello World)

print (el |l o Worl do)
print (" Hello World 0)

Quotation marks can be single (6)or double (") 7 it does not matter as long as they match.

Python is not too fussy about what you type inside quotation marks. Outside quotation
marks, Python is very limited in what it understands. One thing Python understands outside

guotation marks is number. Numbers do not have to be enclosed inside quotations.

Each of the following lines are syntactically correct. (Try them!)

(print("What is your age? ") -\
print (21)

print ("My age is 21")

print ("My age is", 21)

print ("I am", 18, "and my friend is", 21)

\print("The print command", "can handle", "more than 1 string."))

KEY POINT: The technical word for text is string. A string is any text enclosed

inside quotation marks.

Notice from the fine three lines in the above example how print allows strings and

numbers to be separated by commas.

a Write a Python program to display the text Hello, my name is Sam!

Python Programming: A Manual for Teachers of Leaving Certificate Computer Science Page7

https://github.com/pdst-lccs/lccs-python/blob/master/Section 1 - Getting Started/print demo - age.py

PDSTO @ python

Escape Sequences

Let6s say we wanted t o di kipcludingthe guatation mdrds.o wi ng t e X
In the words of Nelson Mandela, i Educati on i s the most powerful w
to change the worl do

The |ine below does not work because in t Oeye

the first and the remainder of the line is not understood.

print ("In the words of Nelscn Mandela, "Education is the mest
powerful weapon which we can use to change the world"")

To fix the syntax error we escape the second quotation using the backslash character, \, as
follows:

print ("In the words of Nelscn Mandela, \"Education is the most %
powerful weapon which we can use to change the worldi"")

In the above example the use of \ " tells Python include the double quotes as part of the

string (as opposed to treating it as the closing quote).

The backslash character introduces an escape sequence in a string. Some common escape

sequence characters are illustrated in the table below:

/
Python

Z:;:e Escape Sequence Meaning
sequences \n Newline
\t Tab
\d Single Quote
\o Double Quote
\ Backslash

Python Programming: A Manual for Teachers of Leaving Certificate Computer Science Page8

https://github.com/pdst-lccs/lccs-python/blob/master/Section 1 - Getting Started/Esc Sequence1.py

PDST @ python

Experiment!
Try the following and see if you can explain what is going on.

print ("ANEBYRC")
print ("C:\\Users\\jchndoe\\Documentsi \myfile.txt"™)

g What was the main thing you learned in this section about escape
/ sequences?
" g

l What one question about escape sequences do you still have?
M

Python Programming: A Manual for Teachers of Leaving Certificate Computer Science Page9

https://github.com/pdst-lccs/lccs-python/blob/master/Section 1 - Getting Started/Esc Sequence2.py

Flow of Control

@ python

The flow of control refers to the order in which the lines of a computer program are run by

the computer. Normally lines are executed in the same sequence in which they appear. This

type of flow is called sequential. We use the following four-line program to illustrate this

concept.
l. print ("ARs I was going cut cne day")
2. print ("My head fell ocff and rolled away,")
3. print ("But when I saw that it was gone, ")
4, print ("I picked it up and put it on.")

When this program is run, execution starts at line 1 which causes the string, As | was going

out one day, to be displayed on the output console. Execution then moves sequentially

through lines 2, 3 and 4 and finally, the program ends as there are no more lines to execute.

The table below illustrates the program output be after each line is executed.

Line Number

1

Program Output
As | was going out one day

As | was going out one day
My head fell off and rolled away,

As | was going out one day
My head fell off and rolled away,
But when | saw that it was gone,

As | was going out one day
My head fell off and rolled away,
But when | saw that it was gone,
| picked it up and put it on.

/ STUDENT TIP \

Students should be
encouraged, from an early
stage, to trace the
execution process in their
own heads, before
submitting their code to
the computer for
execution. (This activity is

u:a lled program tracing. u

In reality, we only see the final output after line 4 is executed i this is because the program

is executed so fast by the computer. Nonetheless, it is important for students to understand

that for the computer to get to the final stage it had to pass through the other stages on the

way.

Python Programming: A Manual for Teachers of Leaving Certificate Computer Science Pagel0

https://github.com/pdst-lccs/lccs-python/blob/master/Section 1 - Getting Started/Poem - As I waspy

PDSTO @ python

Indentation

Indentation refers to the empty space(s) at the beginning of a line of code.

Python is very fussy about indentation - try to run the following:

l. print ("As I was going out one day")
2. print("My head fell off and rolled away,")

3. print ("But when I saw that it was gone, ")
4. print ("I picked it up and put it on.")

Notice that the second line contains a leading space. This is an indentation error.

The following syntax error is displayed when a program contains an indentation error.

e unexpected indent

QK

Every line of Python code must be properly indented.
Proper indentation means logically related lines (called blocks of code) appear at the same

level of indentation.

In the above example indentation is not needed but i as we will see later 1 it is sometimes

necessary to indent code.

Python Programming: A Manual for Teachers of Leaving Certificate Computer Science Pagell

PDSTO @ python

ﬁ Programming Exercises

1. Write a program to display your own name and address.

2. Re-arrange the lines of code below into a program that displays the pattern shown on the
right. Note that you can use any line as oftenasyoulike,but you wondét need to
every line.

S HHEEHE HEHEHE HEEEHE

seint(7ee F % Hit it
Print("sswsus ##swas AHREE") THHHHHE HEHHEE HEHHHE
TR *e, HEOHE it
orint(’ Fr;;t{, o es aw) HHHHEHE HAHEHD HEHHS

3. Reflect on what you have learned about Python so far. Use the space below to write
three things that Python likes and three things that Python does not like.

Python |1ikes é

=

N

w

Python does not like é

Python Programming: A Manual for Teachers of Leaving Certificate Computer Science Pagel2

PDSTO @ python

BREAKOUT ACTIVITIES

The focus on these activities is on getting used to the Python programming environment and

in particular sequential flow of control.

BREAKOUT 1.1: Automated Teller Machine (ATM) Menu System
The Python program below displays the ATM menu shown on the right hand side.

This code displays the main ATM menu
PNt (| ———————= = e e
print("\tl\t LCCS BANK LIMITED\Lt|")

print ("\t|\t ATM Main Menu\t\t|")

print ("\EINENENENE|")

print ("\t|\tl. Balance Enguiry\t|")

print ("\t|\t2. Cash Lodgement\t|")

print ("\t|\t3. Cash Withdrawal\t|")

print ("\t|\t4. Cash Transfer\t|")

print ("\t|\t5. Change PIN\t\t|™)

print ("\t|\t6. Other Services\t|")

jeeatialie, (PAWE (| \WENE W ENE | ™)

print ("\t|\t7. Exit\t\t\t|")

sl e AN [- -
eeatialie, (TAWE (| \WEWESIENE | ™)

print("\tl CHOOSE AN OPTION >> \t\t|")
print ("\tINENENENE]™)

erEhae (UNE || s mmmm e e e e e e e e
EnEatiie ({7 ™))

Suggested Activities

1. Key in the above program or download it from GitHub and
- make some changes to the program (e.g. add/remove/edit a menu option)
- discuss traditional console menus vs. GUI/touch screen interfaces

- discuss possible logic behind the options

2. Design and implement a menu for some other application of your choice e.g. what are
the options on your favourite app? What additional options would you like?

(For this exercise it is useful to think of a system from an end-u s e peésgective.)

Python Programming: A Manual for Teachers of Leaving Certificate Computer Science Pagel3

https://github.com/pdst-lccs/lccs-python/blob/master/Section 1 - Getting Started/Breakouts/Breakout 1.1 - ATM/ATM menu.py

PDSTO @ python

BREAKOQOUT 1.2: Turtle Graphics
Turtle graphics is a popular way for introducing programming to novice programmers. It was

part of the original Logo programming language developed by Wally Feurzig and Cynthia
Solomon in consultation with Seymour Paper in 1966.

The movements of the turtle graphic object can be compared to the movements that you
would see if you were looking down at a real turtle inside a rectangular shaped box. The

program below causes the shape/pattern shown to the right to be drawn out on the screen.

. forward(100) # move forward 100 units
- left (90} # turn left by 20 degrees
. forward (100)

6. right (45}

7. forward(50)

/"-_. from turtle import * \
2
3
4
s

8. left(90) %
\g' forward (100) _‘/

Program Listing Shape

Program Explanation

U Line 1tells Pythontoimportalibrarycal | ed o6turtl ebdé. A | ibrary car
external Python program that contains useful code. fr omand import are two Python
keywords. When a library is imported into a program the functionality of that library can
then be used in that program.

i The commands on lines 3 to 9 inclusive instruct Python to move the turtle forward and

turn it left/right until the shape is drawn.

Students should be reminded to close the turtle window once they have finished running

your program. The window can be closed by clicking on in the top right corner.

Python Programming: A Manual for Teachers of Leaving Certificate Computer Science Pagel4

https://github.com/pdst-lccs/lccs-python/blob/master/Section 1 - Getting Started/Breakouts/Breakout 1.2 - Turtle Graphics/Turtle Shapes v1.py

PDSTO @ python

Suggested Activities

1. Read lines 3-9 of the program and see if you can figure out how the shape is created
2. Type the program in and run it. (Warning! Do not save the program as turtle.py)

3. Insert comment on lines 57 9 inclusive. (Lines 3 and 4 are already commented.)

4. Rearrange lines 3 - 9 into different orders and see if you can explain
the change in output. You can delete some lines if you wish.

5. Experiment with the numbers used on lines 37 9 until you
understand what they mean. For example, you could change 100 to

50 on line 3, or change 90 to 45 on line 8.

6. Modify the program so that it displays the shape shown to the right E—

STUDENT TIP
Students should be encouraged to get into the habit of saving
and re-running their program after every little change.

Some of the more common movement commands supported by the turtle library are

outlined below.

Command Explanation

This command moves the turtle forward by n units from whatever
forward(n)

position the turtle is facing at the time the command is issued

When this command is issued it moves the turtle in the opposite
backward(n) direction to whatever direction the turtle is facing. The turtle is moved

by n units from its current position.
) This command turns the turtle in a rightwards direction. The amount
right(angle) o .

of turn is specified by the programmer using angle .

This command turns the turtle in a leftwards direction. The amount of
left(angle) _ - _

turn is specified by the programmer using angle .

Python Programming: A Manual for Teachers of Leaving Certificate Computer Science Pagel5

PDSTO @ python

Further Activities
The default starting position for the turtle is the centre of the screen with an arrow pointing to
the right (i.e. east). It is up to the programmer to keep a track of the position of the turtle on

the screen and the direction it is facing.
The best way to learn how to use turtles is to experiment. The following exercise might help.

1. Match each code block (numbered below) to the corresponding shape (denoted by

letters).

forward (100)
right (90)

forward (50)
1. right (S0) A.
forward (100)

right (90)
forward (50) %

forward (100)
left (&0) T

2. forward (100} B.

left(60) %
forward (100}

forward (100)
left (120)
3. forward (100) C.

left (120}
forward (100} °

forward (100)
left (S0)

forward (50)
4. left (90) D.
forward (100)

left (50)
forward (50) '

Note: Before running any of the above blocks of code you will need to add the line

from turtle import * before the turtle commands.

Python Programming: A Manual for Teachers of Leaving Certificate Computer Science Pagel6

https://github.com/pdst-lccs/lccs-python/blob/master/Section 1 - Getting Started/Breakouts/Breakout 1.2 - Turtle Graphics/Turtle Shapes v2 - block1.py
https://github.com/pdst-lccs/lccs-python/blob/master/Section 1 - Getting Started/Breakouts/Breakout 1.2 - Turtle Graphics/Turtle Shapes v2 - block2.py
https://github.com/pdst-lccs/lccs-python/blob/master/Section 1 - Getting Started/Breakouts/Breakout 1.2 - Turtle Graphics/Turtle Shapes v2 - block3.py
https://github.com/pdst-lccs/lccs-python/blob/master/Section 1 - Getting Started/Breakouts/Breakout 1.2 - Turtle Graphics/Turtle Shapes v2 - block4.py

PDs'::Q @ python

2. Now demonstrate that your answers are correct!

Do this by keying in and running each of the separate code blocks.

3. The commands listed below can be used to change the appearance of turtle objects

Command Explanation
This command sets the appearance of the turtle object to be whatever
shape is specified by s. Valid values are arrow , turtle, circle
shape(s) _ _ _
square , triangle and classic . (Use quotation marks.) The arrow
shape is the default.
_ When this command is used it makes the turtle object disappear from
hideturtle()
the output screen.
showturtle() This command makes the turtle visible again.
This command sets the colour of the lines drawn by the turtle to be the
color(c) colour specified by & Try different values e.g. red , blue , green .
(Don6t forget to use quotation ma:
This command sets the line thickness of the line drawn by turtle
pensize(n) movements. The value of n can be any number from 1 to 10 where 1 is
the thinnest and 10 is the thickest. Try it!

Write a Python program to display the shapes shown below.

A ical blue li f)
A 50x100 red vertical blue line o The letter T in red

length 100 units and o
rectangle thickness 5 units (pen is hidden)

A 50x50 square

Can you come up with more than one solution for each shape? Compare and discuss your

solutions with your classmates.

Python Programming: A Manual for Teachers of Leaving Certificate Computer Science Pagel7

PDSTO

BREAKOUT 1.2: Games Programming with pygame

@ python

pygame! is a free and open source Python library useful for games programming. As it does

not come with the standard Python installation, pygame needs to be installed separately.

When the program shown below is run it causes the output window illustrated to the right to

be displayed. The output window contains 5 different shapes i a blue horizontal line, a green

diagonal line, a white rectangle, a red circle and red ellipse. These shapes are drawn in

response to the commands on lines 15 to 19.

Read the code carefully 1 focus your attention on lines 15 to 19 (highlighted in bold) - and

see if you can guess which line of code is responsible for drawing which shape.

/ import pygame
==t up pygame

W b=

pygame.init ()

ES I R T Y

m

BLACE = (0, 0, 0O)
9. RED = ({2535, 0, 0}
10. GEREEN = (0O,
11. ELUE = {Q, 0, 253}
12. WHITE = (2553, 2533,
13.

14. # draw scome
15. pygame.draw.
16. pygame.draw.
17. pygame.draw.
18. pygame.draw.
19. pygame.draw.

255, 0)

shapes

line (window,
line (window,
rect (window,
circle (window,
ellipse (window, RED,

20. # update the windeow display
21. pygame.display.update()

windew = pygame.display.set mode (400, 300}) #

=et up the colours

255)

BLUE, (50, 50), (250, 50), 4)
GREEN, (100, 250), (250, 50), 2)
WHITE, (100, 250, 200, 75))
RED, (300, 250), 30, 0)

(200, 400, 40, 80), 1)

(width, height)

~

Program Listing

The individual lines of code are explained on the next page.

7 pygame window - X

Output Window

Programmers are often presented with code they have not written themselves and need to

figure out for themselves what the code does. One tried and trusted method used by

programmers to familiarise themselves with
incremental changes to build up an understanding. Try the following suggested activities.

! https://www.pygame.org

Python Programming: A Manual for Teachers of Leaving Certificate Computer Science Pagel8

6newo

https://www.pygame.org/
https://github.com/pdst-lccs/lccs-python/blob/master/Section 1 - Getting Started/Breakouts/Breakout 1.3 - pygame/Pygame Shapes v1.py

PDSTO @ python

Suggested Activities

1. Key in (or copy+paste from GitHub) the full program and make sure it runs properly.

2. Devise your own theories about the code. For example, you might suspect that line 15

draws the blue horizontal line. In order to test this theory, you could comment out lines

16, 17, 18 and 19 and then run your program to see if you are correct.

This process should be repeated until you have confirmed your understanding of which

line of code is responsible for which shape.

3. Experiment by rearranging lines 15-19 into different orders. Each time you jumble them

around, run your program to see if they make any difference to the output displayed.

4. Change the code so that the shapes are displayed in different colours

5. Modify the numbers used in the commands used to draw the lines and the rectangle

(lines 15, 16 and 17). Can you figure out what the numbers mean?

Co-ordinate System

The diagram below explains the window co-ordinate system used by pygame.

T-ris The co-ordinates of the four corners of a

A

Y- TS

10

y

4

r

> window having width, 0 and height, Qare:

5 10
(0,0)
ortgin i top left

P(11,9) 0 bt top right
THQ bottom left
0 HQ bottom right

window co-ordinate system used by pygame

Python Programming: A Manual for Teachers of Leaving Certificate Computer Science Pagel9

Game Loop
You may have noticed that the output window
does not close. To fix this problem you will

PDSTO @ python

1. import pygame, SYysS

22.

need to make two changes 23. # run the game loop
24_. while True:

a) M0d|fy line 1 as shown G for event in pygame.event.get () :
26. if event.type == 12:

b) Add the (game loop) code shown here to 21 PYoemeREREEl
28. sys.exlit()

the end of the program listing.

Program Explanation

i

Line 1 imports the pygame and sys libraries into the program. pygame contains
functionality that our program can use to draw shapes.

Line 4 tells Python to initialise (i.e. start) the pygame engine

Line 5 tells Python to create an output window of width 400 units and height 500 units
Lines 9 to 12 define the primary colours BLACK, RED, GREEN, BLUE and WHITE.
These names are now known to Python and can be used further down in the program.
Lines 15 instructs Python to draw a horizontal blue line. The co-ordinates of the start and
end positions are provided along with codes for the colour and line thickness.

Lines 16 instructs Python to draw a diagonal green line. The co-ordinates of the start and
end positions are provided along with codes for the colour and line thickness.

Lines 17 instructs Python to draw a white rectangle. The co-ordinates of the upper left
corner are provided along with values for the width and height.

Lines 21 tells Python update the display window with the new shapes.

[g

/ Log your thoughts.

How has your knowledge of programming been extended so far?
M

Python Programming: A Manual for Teachers of Leaving Certificate Computer Science Page20

PDSTO

Further pygame activities

@ python

1. The commands on lines 17, 18 and 19 draw a rectangle, circle and ellipse respectively.

Modify the numbers used inside the brackets. Can you figure out what the numbers

mean?

Study the program listing on the next page carefully.

When the program is run, it displays the first three rows of the pattern as shown.

The background is painted white by
the fill command, so, in actual
fact, the program draws four black

squares on each of the three rows.

Each individual black square is
drawn in response to the command
pygame.draw.rect . The squares

are v Tt U TUnits in size.

There is a problem however.

The programmer had intended the
program to display the chequer
board pattern shown here to the

right.

Can you make the necessary changes?

£ Chequer Board - hod

How might the program differ if the background was painted BLACK instead of white?

3. Calculate the co-ordinates of the centre of a 400x500 window.

Can you generalise this calculation with a formula that would work for a window of any

size?

4. Write a program to display a circle centred on the output window. (You choose the size!)

Generalise your solution so that it works for any window size.

Python Programming: A Manual for Teachers of Leaving Certificate Computer Science Page2l

PDS':\'Q @ python

Modify the program below so that it displays the first three rows of a proper chequer board

pattern.

import pygame, sys
from pygame.locals import *

start the pygame engine
pygame.init()

create a 400x400 window
window = pygame.display.set_mode((400, 400))
pygame.display.set_caption('Chequer Board")

define some colors
BLACK = (0, 0, 0)
WHITE = (255, 255, 255)

window.fill(WHITE) # paint the window white
Draw Row 1
pygame.draw.rect(window, BLACK, (0, 0,50, 50))

pygame.draw.rect(window, BLACK, (100, 0, 50, 50))
pygame.draw.rect(window, BLACK, (200, 0, 50, 50))
pygame.draw.rect(window, BLACK, (300, 0, 50, 50))

Draw Row 1

pygame.draw.rect(window, BLACK, (0, 50, 50, 50))
pygame.draw.rect(window, BLACK, (150, 50, 50, 50))
pygame.draw.rect(window, BLACK, (200, 50, 50, 50))
pygame.draw.rect(window, BLACK, (350, 50, 50, 50))
Draw Row 1

pygame.draw.rect(window, BLACK, (50, 100, 50, 50))
pygame.draw.rect(window, BLACK, (100, 100, 50, 50))
pyg ame.draw.rect(window, BLACK, (300, 100, 50, 50))
pygame.draw.rect(window, BLACK, (350, 100, 50, 50))

update the window display
pygame.display.update()

run the game loop
while True:
for event in pygame.event.get():
if event.type == QUIT:

pygame.quit()
sys.exit()

Python Programming: A Manual for Teachers of Leaving Certificate Computer Science

Pagez2

https://github.com/pdst-lccs/lccs-python/blob/master/Section 1 - Getting Started/Breakouts/Breakout 1.3 - pygame/Display ChequerBoard (problem).py

PDSTO @ python

Section 2

Data,Variables, Assignments and

Expressions

Python Programming: A Manual for Teachers of Leaving Certificate Computer Science Page23

PDSTO @ python

Introduction

So |l etds say we wanted to write a program to di s
colour in a greeting string and then display a personalised goodbye message. We could

write:

print ("Hi Alex — your favourite colour is red")
print ("Goodbye RAlex") %

One problem with the above program is that the string Alex appears twice and this gives rise
to the possibility of a mismatch in spelling. It would be better if had some way of telling our
program to remember the per sonosvarimbleme. Thi s <can

@ KEY POINT: A variable is a programming construct used to store (remember) data.

The listing below uses two variables i personN ame and favouriteColour

personlame = "Alex"
favouriteColour = "red"
. print ("Hi", perscnName, "- your favourite colour is", favouriteColour)

. print {("Goodbye", personName) %

[T TR N I]
P

The variable personName i s used to store a personds name anc

favouriteColour is used to store the personds favourit:e

The variables are declared on lines 1 and 2 respectively. Each line assigns the initial values

Alex and red to the respective variables.

@ KEY POINT: A variable must be declared before it can be used. By declaring a

variable you are telling Python here is a new word and this is its initial value.

Line 3 displays the contents of the variables in a greeting string. Notice that the names of the
variables appear outside the double quotations, and also the use of commas to delimit the

variables from the greeting string.

When Python comes across the variable names in the print command it substitutes the

values of the variables into the string to be displayed.

Python Programming: A Manual for Teachers of Leaving Certificate Computer Science Page24

https://github.com/pdst-lccs/lccs-python/blob/master/Section 2 - Data (variables, assignments and expressions)/Fav Colour v1.py
https://github.com/pdst-lccs/lccs-python/blob/master/Section 2 - Data (variables, assignments and expressions)/Fav Colour v2.py

PDS':\'Q @ python

The name of the person or the colour can now be changed, simply by changing the value of
the variable. For example, we could write:

personlame = "Charlie™
. favouriteColcour = "green"
print ("Hi", personMame, "- your fawvourite coclour is", favouriteCeolour)

. print ("Goodbye", personName)

[¥ = LI O

The program is considered better Dbveriadearsde t he per
needs to be keyed in by the programmer only once. However, the program still has a

problem in that it lacks generality i.e. it only works for one person and one colour. Every time

we want to display a different message we need to change the program.

A more general (and realistic) solution would be to ask the user to enter their name and

favourite colour. This can be achieved using the input command as follows:

. perzcnMame = input ("Enter your name: ")
favouriteColour = input ("Enter your faveourite colocur: "}
. print ("Hi", personMName, "- your favourite coclour is", favouriteCclour) !;?

. print ("Goodbye", personiName)

[SN TR o S

Try running the above program for yourself.

The input command
The input command allows a user to enter a value into a running program and have that

value stored in a variable.

The string in brackets following the word input is displayed as a prompt to the end-user.
Every time the above program is run, whatever values are entered by the end-user are
stored in the variables personN ame and favouriteColour . These values are then

displayed in the output messages.

Without having to make any changes to the program, the output messages can vary on

every run. This is an example of a general solution to a problem.

The input (and print) commands are both examples of Python built in functions. The

complete list of Python built in functions can be found in the appendix.

Python Programming: A Manual for Teachers of Leaving Certificate Computer Science Page25

https://github.com/pdst-lccs/lccs-python/blob/master/Section 2 - Data (variables, assignments and expressions)/Fav Colour v3.py

PDSTO @ python

Variable Syntax

The general syntax for declaring a variable is made up of a left hand side and a right hand
side as follows:

<variable - name> = <expression>

The name of the variable appears on the left hand side and an expression appears on the

right hand side. The 6 = 8ymbol in the middle is the Python assignment operator.

KEY POINT: Although the symbols used to denote the Python assignment operator

@ and a mathematical equation are identical, they should not be confused as they

mean two completely different things.

The use of 6 = @ Python indicates an assignment statement. When Python comes across
an assignment statement it evaluates the expression on the right hand side first. The result
of this evaluation is then stored in the variable named on the left hand side.

The expression on the right hand side can be:
- aliteral value such as a string or a number
- an arithmetic expression (which itself can contain variables)

- the name of a built-in command such as input , as seen in the previous example.

I(;TUIZDIEMTTIP)
It is useful to think of a variable as a ‘box’ in the computer’s
memory (i.e. a memory location) where a value is stored.

Every time a value is assigned to a variable that value is stored
\ft that variable’s memory location. Y.

Python Programming: A Manual for Teachers of Leaving Certificate Computer Science Page26

@ python

a This is an exercise about vocabulary.
The graphic below shows six Python assignment statements and six
(incomplete) English sentences.

Complete the sentences on the right so that each one describes its
corresponding assignment statement on the left.

daysLeft = 167 The variable is initialised to 167

rate = 18.27 Thevalue __ is stored in the variable called rate

name = "Alex" The value Alex is assigned to the variable,

vowels = "AEIOUaciou" The English vowels are to the variable

pwd = input ("Password: ") The value entered by the user is stored in the variable

pay = hoursWorked * rate The value of is by the value of hoursworked

and the result is stored in the variable

Once a variable has been declared the name is addedtoPython 6 s vocabul ary for

remainder of the program.

STUDENT TIP N\
Variables are used by programs to store data.

A programmer should decide to use a variable whenever they
want their program to remember a value that will be needed at
a later stage in that program.

When a variable is declared for the first time it must be given
@me initial value. This is called initialisation.

It is up to the programmer to decide what name to give their variables. The rules and

guidelines for naming variables are described on the next page.

Python Programming: A Manual for Teachers of Leaving Certificate Computer Science Page27

PDs'::Q @ python

Guidelines and Rules for Naming Variables
As a general guideline variable names should be simple and meaningful. A meaningful name
is one that tells something about what the variable is used for. The use of meaningful

variable names makes programs more readable and understandable to fellow programmers.

When choosing a name for a variable it can be helpful to think of a noun that describes the

purpose of the variable.

It is considered good practice to capitalise interior words in multi-word variable names. This
usage is referred to as camel case and first Name addressLinel |, stockCount

highScore , and payRate are all examples of good variable names.

The syntax rules for naming variables are as follows:

U A variable name cannot be Python keyword (e . igport @ defio, et c.)
U Variable names must contain only letters, digits, and the underscore character, _.
U Variable names cannot have a digit for the first character.

U Spaces or dots are not allowed in a variable name

If Python comes across a hame it does not understand it will display a syntax error.

Which of the following are degal6variable names?

a) student.Number

g) 20

h) h20

i) PPSN

) ppsn

k) person name
) address

m) date_of birth
n) 2+4

0) print

Python Programming: A Manual for Teachers of Leaving Certificate Computer Science Page28

PDSTO @ python

Datatypes and Operations

Programmers need to be aware of the type of data that their programs process. This is
referred to as datatype.

Thus far, we have encountered examples of both string and numeric datatypes. If, for

example, we wanted a program to store someoneods
datatype would be string. On the other hand, a numeric datatype is the proper datatype for a
variable to store a personds age or height.

Python supports several different types of numbers - integers, floating point numbers as well
as a range or more exotic types of numbers (e.g. complex numbers, fixed precision decimals
and rational numbers)

Every datatype in Python has a permissible set of operations that are only valid for that type.
(For this reason, Python is said to be a strongly typed language.) The numeric datatype
supports all the usual arithmetic operations such as addition, multiplication etc. These are
illustrated in the table below (assume x=7 and y=3)

Operator Description Example Result

+ Addition X+Yy 10

- Subtraction X-y 4

* Multiplication x*y 21

% Remainder X%y 1

/ Division x/y 2.33333
!/ Floor Division x//y 2

*x Power X ¥y 343

Python arithmetic operators

The normal precedence rules for arithmetic operators apply.

Python Programming: A Manual for Teachers of Leaving Certificate Computer Science Page29

PDS':\'Q @ python

Reflection

Reflect on what you have learned about variables, datatypes and expressions so far.

'/ Use the space provided to document what extended your thinking

about variables, datatypes, and expressions
®

g Indicate in the space below those areas relating to variables,
/ datatypes, and expressions that vy
®

Python Programming: A Manual for Teachers of Leaving Certificate Computer Science Page30

PDSTO @ python

Program Tracing

Computers can execute programs at a rate of millions of lines per second. The values of
variables can change so fast that programmers can easily lose track and sometimes find it
difficult to be sure that their program logic is correct. In order to combat this, programmers
often execute a program manually i.e. using pen and paper to keep track of variables line-
by-line. This activity, called program tracing is used by programmers to verify for themselves
that their program will do what it is intended to when it is run by the computer.

We trace through the program shown (as if we were the g ™
: : : : : 1. x = 8

computer) line-by-line, starting at line 1. Every time a v = x

variable is declared for the first time we draw a box and . print (v}

X = x + 1

. print (x]}
. print(y) %?J

write the value of the variable in the box. When the value of

a variable changes we replace the old value with the new

rmm-hwm

one. This activity is called program tracing.

The Python code is shown on the left below and the variables are illustrated as boxes on the
right. The boxes are used to represent memory locations i.e. they are part of a notional
machine used by programmers to keep track of the state of their variables at runtime.

1. xu=m XB
== x@ yO

3. print(y)] The program displays the contents of y i.e. 8

= <8 y0

5. print (x)] The program displays 9

6. print (y) The program displays 8

Python Programming: A Manual for Teachers of Leaving Certificate Computer Science Page31l

https://github.com/pdst-lccs/lccs-python/blob/master/Section 2 - Data (variables, assignments and expressions)/Fav Colour v3.py

PDs'!.:Q @ python

Pfemond [evwlaprens B
Sarvan b et [

Exercise: Program Tracing
ﬁ Manually trace the programs shown below. (Use the space provided on
the next page.) Can you figure out what each program does?
PROGRAM 1

1. goals = 0
2. goals = goals + 1
3. print ("The walue of goals is", goals)

PROGRAM 2 PROGRAM 3

rl. answer = 142 -\ rl. 3 = 10 1
2. print (answer) 2 b =5 '

3. valu=sl = answer+3 3. temp = a

4. walus2 = 14243 i — -

5. print(valusl, wvalus2) 5. b —
. y J \ E y

PROGRAM 4

1. accountBalance = 1000 %
2. withdrawalimount = &00

3. accountBalance = accountBalance - withdrawallfmount

PROGRAM 5

. days = 2 1
. hr=s = 24

. mins = &0

. total = days*hrs*mins

. print (total)

rLI'IIJhD..'I[\JI—'-\

J

STUDENT TIP
Students should be encouraged to trace existing code
as early as possible in the learning process.

Python Programming: A Manual for Teachers of Leaving Certificate Computer Science Page32

https://github.com/pdst-lccs/lccs-python/blob/master/Section 2 - Data (variables, assignments and expressions)/trace program 1.py
https://github.com/pdst-lccs/lccs-python/blob/master/Section 2 - Data (variables, assignments and expressions)/trace program 2.py
https://github.com/pdst-lccs/lccs-python/blob/master/Section 2 - Data (variables, assignments and expressions)/trace program 3.py
https://github.com/pdst-lccs/lccs-python/blob/master/Section 2 - Data (variables, assignments and expressions)/trace program 4.py
https://github.com/pdst-lccs/lccs-python/blob/master/Section 2 - Data (variables, assignments and expressions)/trace program 5.py

PDS':\'Q @ python

Tracing notes

Python Programming: A Manual for Teachers of Leaving Certificate Computer Science Page33

PDSTO @ python

Pfemoad [evwlgprens B
Sarvan b et [

Input-Process-Output

Many computer programs follow the input-process-output model as illustrated.

This means that a program accepts data as input, carries out some processing (usually a

calculation) and then displays and/or stores the output.

We already know the input command is used to prompt an end-user to enter a value into a

running program. The value entered can then be stored in a variable.

’ KEY POINT: programmers need to be acutely aware of the type of data with which
their program is working.

By default, the input command returns a string. This means that if you want your program

to accept numeric data from the end-user, the value entered must be converted from a string
to either an integer or a floating point (i.e. a decimal) number.

Fortunately, Python has two built-in commands that can perform these conversions. These

are called int and float respectively.

Built-in Function Description

int(s) Converts the string 6s06 to an
object

float(s) Con_verts_thg s‘trlng 6s0 to a f
result is a new floating point object

The two commands int and float are important because they allow Python to use values

entered by the end-user in arithmetic expressions.

Python Programming: A Manual for Teachers of Leaving Certificate Computer Science Page34

PDS':\'Q @ python

Example i Year of Birth
We want to write a program to calculate a persor

Our program will ask the end-user for two pieces of information - the current year and the
age they will be at the end of the current year.

We will store this data in two variables i year and age.

Since year and age are both numeric we will need to instruct the program to convert them

from strings to integers. This can be done with the int command.

The solution is as follows.

1. year = int (input ("Enter the current year: "))
Z. age = int (input ("What age will you be at the end of this year : "))
3. print("¥You were born in", year-age)

Lines 1 and 2 both display a prompt asking the user to enter values and then convert these
values from strings to integers. The conversion from string to integer is needed here

because Python knows how to subtract numbers but cannot subtract strings.

Line 3 subtracts the two integers (to calculate the year of birth) and displays the result in an

output message.

Notice how both int and input are called on the same line. When commands are
combined together on the same line like this it is called function composition. Python
executes the innermost function first and then works back towards the leftmost function

which is executed last.

Python Programming: A Manual for Teachers of Leaving Certificate Computer Science Page35

https://github.com/pdst-lccs/lccs-python/blob/master/Section 2 - Data (variables, assignments and expressions)/Year of Birth.py

PDSTO © python

I't is important to understand the subtl e di
value 2018. One difference is subtraction is supported for numbers but not for strings

KEY POINT: The operations that can be carried out on values are constrained by
theval ueds underlying object type. For ¢

strings.

Try running the following program:

1. year = input ("Enter the current year: ")
2. age = input("What age will you be at the end of this year : ")
3. print("You were born in", year-age)

You will see an error like this:

Traceback (most recent call last):
File "C:\PD3T\Python Workshoph=src'vear of birth.py", line 3, in <module>
printc ("You were born in", year-age)
TypeError: unsupported operand type (s} for -: 'str' and 'str'

Since the values are not converted to integers Python stores them as strings. The
expression year - age on line 3 is an attempt to subtract two strings which is not allowed in

Python. Python does not support the subtraction operation on strings.

It is also worth noting that numbers can be converted to string objects using the str

function. As an experiment try running the following lines of code separately:

This causes the following error to be displayed
TypeError: must be str, not int

This causes the string 0

KEYPOINT: The 6+06 operator for strings mea

Python Programming: A Manual for Teachers of Leaving Certificate Computer Science Page36

ffere

