

Python Programming: A Manual for Teachers of Leaving Certificate Computer Science Page ii

Python Programming

A Manual for Teachers

of

Leaving Certificate Computer Science

Please cite as: PDST, Leaving Certificate Computer Science v2.0, Python Workshop, Dublin, 2020

Python Programming: A Manual for Teachers of Leaving Certificate Computer Science Page iii

Table of Contents

Section 1 ï Getting Started 1

Hello World ééééééééééééééééééééééééééé 2

Language Syntax ééééééééééééééééééééééé..... 3

Basic Python Syntax ééééééééééééééééééééééé 5

Escape Sequences ééééééééééééééééééééééé.. 8

Flow of Control ééééééééééééééééééééééééé.. 10

Programming Exercises ééééééééééééééééééééé.. 12

BREAKOUT ACTIVITIES éééééééééééééééééééé 13

Section 2 ï Data, Variables, Assignments and Expressions 23

Introduction éééééééééééééééééééééééééé.. 24

Variable Syntax ééééééééééééééééééééééééé 26

Datatypes and Operations éééééééééééééééééééé. 29

Program Tracing éééééééééééééééééééééééé.. 31

Input-Process-Output éééééééééééééééééééééé.. 34

More Built in Functions éééééééééééééééééééééé 40

The Remainder Operator (%) ééééééééééééééééééé. 41

Programming Exercises ééééééééééééééééééééé.. 43

Running Totals ééééééééééééééééééééééééé.. 45

Introducing Random Numbers ééééééééééééééééééé 47

Additional Notes ééééééééééééééééééééééééé 49

BREAKOUT ACTIVITIES ééééééééééééééééééééé 51

Section 3 ï Strings 63

Introduction ééééééééééééééééééééééééééé 64

String Indexing ééééééééééééééééééééééééé.. 66

String Slicing éééééééééééééééééééééééééé. 70

String Addition and Multiplication ééééééééééééééééé.. 71

String Formatting éééééééééééééééééééééééé. 74

Built-in String Commands éééééééééééééééééééé.. 76

Coding Systems éééééééééééééééééééééééé.. 77

Python Programming: A Manual for Teachers of Leaving Certificate Computer Science Page iv

Programming Exercises ééééééééééééééééééééé.. 79

String Methods ééééééééééééééééééééééééé.. 80

Additional Notes (Sequences) ééééééééééééééééééé 83

BREAKOUT ACTIVITIES ééééééééééééééééééééé 85

Section 4 ï Lists 95

Introduction ééééééééééééééééééééééééééé 96

Creating Lists éééééééééééééééééééééééééé 97

Common List Operations ééééééééééééééééééééé. 99

List Indexing éééééééééééééééééééééééééé. 101

List Slicing ééééééééééééééééééééééééééé.. 105

List Methods éééééééééééééééééééééééééé.. 109

Two More String Methods (split and splitlines) éééééééé.. 111

BREAKOUT ACTIVITIES ééééééééééééééééééééé 113

Section 5 ï Programming Logic 120

Introduction ééééééééééééééééééééééééééé 121

Hangman! ééééééééééééééééééééééééééé.. 122

Boolean Expressions ééééééééééééééééééééééé 124

The Guessing Game ééééééééééééééééééééééé 128

Selection (if, else, elif) éééééééééééééééééé 129

BREAKOUT ACTIVITIES (selection) ééééééééééééééé.. 138

Iteration (for, while) ééééééééééééééééééééé... 141

BREAKOUT ACTIVITIES (iteration) 160

Section 6 ï Modular Programming Using Functions 168

Introduction ééééééééééééééééééééééééééé 169

Basic Function Syntax éééééééééééééééééééééé. 177

Function Parameters and Arguments éééééééééééééééé 182

Function Return Values ééééé...éééééééééééééééé 187

Examples and Exercises éééé...éééééééééééééééé.. 190

Boolean Functions ééééé...éééééééééééééééééé. 194

Python Programming: A Manual for Teachers of Leaving Certificate Computer Science Page v

Using Functions to Validate Data ééééééééééééééééé... 199

Programming Exercises 6.1 é.éé...ééééééééééééééé... 201

Recursion ééééé...éééééééééééééééééééééé 205

Programming Exercises 6.2 éééééé...ééééééééééééé. 209

Programming Exercises 6.3 éééééé...ééééééééééééé. 210

BREAKOUT ACTIVITY 6.1 (ATM System) ééééééééééééé.. 214

BREAKOUT ACTIVITY 6.2 (Summing Numbers) éééééééééé... 224

BREAKOUT ACTIVITY 6.3 (Turtle Graphics) éééééééééééé.. 228

BREAKOUT ACTIVITY 6.4 (Check Digits) ééééééééééééé... 234

Section 7 ï Dictionaries 242

Introduction ééééééééééééééééééééééééééé 243

Dictionary Definitions ï some examples éééééééééééééé... 244

Creating Dictionaries ï syntax ééééééééééééééééééé 247

Indexing Dictionaries ééééééééééééééééééééééé 249

Adding, Changing and Deleting Dictionary Elements ééééééééé. 255

Programming Exercises 7.1 .ééé...ééééééééééééééé... 263

Iterating over dictionaries ééééééééééééééééééééé 268

Dictionaries and Lists éééééééééééééééééééééé... 271

BREAKOUT ACTIVITY 7.1 (Frequency Counters) éééééééééé. 273

Appendices 280

Appendix A: Python Keywords éééééééééééééééééé... 281

Appendix B: Python Built-in Functions ééééééééééééééé.. 281

Appendix C: Python Assignment Operators ééééééééééééé. 282

Appendix D: Python Arithmetic Operators éééééééééééééé 282

Appendix E: Python Relational Operators éééééééééééééé 282

Appendix F: Truth Tables for not, and, and or éééééééééééé. 283

Appendix G: Sample Solutions to Selected Problems ééééééééé 284

Python Programming: A Manual for Teachers of Leaving Certificate Computer Science Page vi

Manual Overview

The purpose of this manual is to provide Leaving Certificate Computer Science (LCCS)

teachers with an enhanced knowledge of the Python programming language thereby

enabling them to independently improve their own programming skills.

Although the manual will serve as support material for teachers who attend the Python Skills

Workshops which are a key component in our two-year CPD programme for LCCS teachers,

it is envisaged that its real value will only come into play in the weeks and months after the

workshops have been delivered. Beyond these workshops, the manual may be used as a

basic language reference for Python, but more importantly, as a teaching resource that

might be used to promote in teachers, a constructivist pedagogic orientation towards the

planning and teaching of Python in the LCCS classroom.

The manual itself is divided into seven sections as follows:

- sections 1 and 2 cover basic, beginner programming concepts such as program

execution, flow of control, simple datatypes, variables, assignments and expressions

- sections 3 and 4 cover the two datatypes - strings and lists ï and associated operations

- section 5 covers programming logic ï specifically, Boolean expressions, selection and

iteration

- sections 6 and 7 cover more advanced Python programming topics such as functions

and dictionaries

Of course there is much more to Python than the material covered in this manual. Among

the more notable topics that are not explicitly addressed are, object-oriented programming

and classes, list comprehensions and exceptions. That said, every effort has been made to

ensure that the content contained here is adequate in order to mediate LCCS in the

classroom.

Throughout the manual there are lots of examples and related exercises. Readers will find it

helpful if they read (and try) the examples before attempting the exercises. The source code

from most of the examples are available to download from the PDST GitHub repository

(https://github.com/pdst-lccs/lccs-python) and links to sample solutions for many of the

programming exercises as are available at the end of the manual.

https://github.com/pdst-lccs/lccs-python

Python Programming: A Manual for Teachers of Leaving Certificate Computer Science Page vii

A high-level overview of the content of this manual is presented below.

Section 1 ï Getting Started

The aim of this section is to get readers up and running. By the end of this section

participants should have a basic understanding of program execution, sequential processing,

strings, escape sequences and the importance of language syntax. Participants will have the

opportunity to write and modify simple programs. The section concludes with a practical

lab/breakout session which introduces turtle graphics and games programming using the

pygame library.

Section 2 ï Data, Variables, Assignments and Expressions

This section will provide participants with a broad overview of the use of variables,

assignments and expressions. Participants will have the opportunity to learn how to initialise

simple variables as well as use an assignment statement to change its value. The

importance of data and datatype is made clear. Arithmetic expressions and the input

command are introduced. Participants learn how to apply these concepts through program

tracing, testing, the use of the remainder (modulus) operator, running totals and random

numbers. The section concludes with a practical lab/breakout session which as well as

building on some of the óprojectsô started in Section 1, introduces some basic file i/o

operations.

Section 3 ï Strings

In this section we will cover strings ï basic sequence operations such as concatenation,

multiplication, indexing and slicing will be explained. Example programs will extend thinking

on coding systems and ciphers, and draw on the use the use of built-in functions - ord and

chr . String specific methods and formatting will also be explained. Participants will be given

a hands-on tour of the official online Python reference at https://docs.python.org/3/. The

section concludes with a practical lab/breakout session where participants will be given an

opportunity to write programs to generate web pages and analyse text from live RSS feeds.

Section 4 ïLists

The aim of this section is to extend participants knowledge of sequences through the

concept of lists. Motivation is provided through a discussion on the many real-world

applications of lists. List construction, indexing and slicing are explored in greater detail. The

section describes the most common list specific methods and how to use them. Examples of

how to use split and splitlines to generate lists are provided. The breakout activities

https://docs.python.org/3/

Python Programming: A Manual for Teachers of Leaving Certificate Computer Science Page viii

at the end of this section includes the use of lists to construct random sentences, further

statistical analysis of data read in from a file of peopleôs heights, and finally, a program to

use lists as a basis for giving directions to a graphic turtle object.

Section 5 ï Programming Logic (selection/conditions and iteration/loops)

This section explains the syntax and semantics of a number of programming constructs such

as if , elif , else , while and for statements. The emphasis throughout is on application

i.e. recognising situations where it is more appropriate to one of these control structures over

the other. Many of the examples are layered, based on a guessing game program. The

section concludes with a breakout session where participants will be able to consolidate their

learning and further develop their project work from the previous breakout sessions. The use

of plotly to present data in graphical format will also be introduced.

Section 6 ï Modular Programming using Functions

The purpose of this section of the manual is to explain how functions can be used to

organise programs into logically related units of code. The architecture of a typical Python

program is presented and user-defined function are distinguished from built-in and library

functions. The syntax and semantics for defining and calling functions is explained, as is the

use of arguments/parameters to pass information into functions and return values to pass

information out of functions. The examples build on the programming concepts covered in

earlier sections and cover topics such as temperature/distance conversions, compound

interest/future value calculations, and maximum values. The use of Boolean functions to

perform tests such as to determine whether a number is prime or a given year a leap as well

as to validate data is explained. The chapter contains many programming exercises

designed to elicit the use of functions and structured programming and the topic of recursion

is also explored in some detail. The section concludes with a number of practical

lab/breakout session which can be adapted for use in the LCCS classroom.

Section 7 ï Dictionaries

The purpose of this chapter is to provide a full overview of the dictionary data structure.

Particular emphasis is placed on discussing the similarities and differences between lists

and dictionaries. The final breakout session ï based on frequency counting ï is designed to

elicit the computational thinking skills such as abstraction, pattern recognition,

decomposition and algorithmic thinking.

Python Programming: A Manual for Teachers of Leaving Certificate Computer Science Page ix

Conventions

To help with navigation through this manual, the following conventions are used:

V Italics are used to highlight important new words and phrases defined

V Courier New font is used to denote Python code such as keywords, commands and

variable names

The icons illustrated below are used to highlight different types of information throughout this

manual.

Space to answer questions using pen and paper.

Python syntax rule.

Key technical point. A specific piece of information relating to some

aspect of programming.

Experiment. An opportunity to change code and see what happens.

Programming exercises. An opportunity for individuals/pairs to

practice their Python programming skills

Breakout Group Work. At the end of every section, readers will work

on a number of themed projects relevant to that section.

Reflection log. A space for the reader to reflect on their own learning

and record their thoughts.

Meet octocat! This is the GitHub integration symbol. Throughout this

manual you will notice this symbol appears along with the example

code. When you click on the octocat you will be directed to the source

code on GitHub. Readers are recommended to copy the code from

GitHub to their preferred Integrated Development Environment (IDE).

Blocks like the one shown above contain

example Python code

Boxes like these contain key messages to

pass on to novice programming students.

Python Programming: A Manual for Teachers of Leaving Certificate Computer Science Page 1

Section 1

Getting Started

Python Programming: A Manual for Teachers of Leaving Certificate Computer Science Page 2

Installation and Setup

All of the examples in this manual were tested using Python 3.6.4. A standard installation of

Python 3.x and IDLE should be sufficient to run most of the examples and complete the

exercises in this manual. However, for some examples/exercises it will be necessary to

install third party libraries such as pygame and plotly .

Hello World

From your IDE create a new file (File -> New File).

Key in (or copy+paste from GitHub ï see Key Point)

the Python statement exactly as it appears here:

KEY POINT: Instead of keying in this code you could click on the octocat and

your browser will direct you to the GitHub repository with this source file. From

this window you can select and copy the code and then paste it into your IDE.

Save the file (File -> Save) and press F5 to run.

If you see the text Hello World displayed in the shell window congratulations ï you are up

and running. The output of the program is displayed in the shell window (output console).

Throughout this manual we will be creating new files, typing in or downloading the example

Python code provided. The aim is to get to the point where we can write our own code.

As teachers we should keep in mind that learning to program for the first time can be tricky ï

there can be lots of stuff going on at the same time, and understanding the syntax of Python

can often seem to be more important than the real purpose of programming which is to

automate solutions to well defined problems.

The sooner students overcome the initial syntax barrier, the sooner they can focus on the

skill of problem solving and specifically the skill of using the features of Python to solve

problems.

Teachers should continually emphasise to novice programmers that Python is just a tool,

and the key skill lies in its application to solve problems.

https://github.com/pdst-lccs/lccs-python/blob/master/Section 1 - Getting Started/print demo - hello world.py

Python Programming: A Manual for Teachers of Leaving Certificate Computer Science Page 3

Another point well worth getting across to novice programmers at an early stage is the

difference between programmers and end-users.

ü Programmers usually work as part of a team. They write and test the code that makes up

a computer system. Student programmers should be encouraged to bear the needs of

the end-user in mind i.e. see the system from the perspective of the end-user.

ü An end-user is the person (or organisation) for whom a software system is developed.

End-users are the customers and, very often, do not know how to program.

Language Syntax

Most of us are already aware that natural languages such as English, French, German,

Polish etc. have their own rules. These rules make up the language grammar. The syntax of

a language is that part of the grammar which defines how sentences are constructed ï

syntax is mostly concerned with legitimate words, symbols and the order in which they are

used.

In a similar way, all programming languages (e.g. Python, Java, JavaScript, C++, PHP, Perl

etc.) have their own syntax ï this is called the language syntax.

One important aspect of Pythonôs syntax is its vocabulary i.e. the words and symbols that

Python understands.

Words can be keywords or commands. The list of all of Pythonôs 33 keywords is given below

ï only some of these will be needed for LCCS.

Fal se break else if not while

None class except import for with

True continue f inally in pass yield

and def for is raise

as del from lambda return

assert elif global nonlocal try

Python 3.6.2 keywords

Programmers can add to Pythonôs vocabulary by defining their own words.

Python Programming: A Manual for Teachers of Leaving Certificate Computer Science Page 4

The most common kinds of symbols in Python are operators ï these can be arithmetic or

relational.

Python also understands white spaces (e.g. spaces, tabs, newlines), numbers and strings

(anything enclosed in quotation marks) ï more on these later.

All programs must adhere to the syntax of the programming language in which they are

written. When a program does not conform to the languageôs syntax it is said to contain a

syntax error. Such programs are said to be syntactically incorrect.

When you try to run a program that has a syntax error, Python displays a syntax error

message.

Comments are a way to tell Python to ignore syntax. They are used by programmers to

improve the readability of their code for the benefit of other programmers. Comments in

Python start with the hash character, # , and extend to the end of the physical line. When

Python comes across the hash character it ignores the rest of the text on that line

Reflection

Reflect on what you have learned about Python so far.

Use the space below to write five things that Python understands.

1.

2.

3.

4.

5.

Python Programming: A Manual for Teachers of Leaving Certificate Computer Science Page 5

Basic Python Syntax

We will now take a look at some of the basic syntax rules of Python and illustrate what

happens when these rules are broken.

Syntax Check #1:

Python is case sensitive. This means that Python treats upper and lower case letters

differently. For example, Python understands print but does not understand Print

Try running the following:

Print("Hello World")

You will see a message like this:

This is Pythonôs way of telling the programmer that the program contains a syntax error.

Python keywords and commands must all be typed in lower case.

Experiment!

Try the following line.

Make some changes - what happens?

What did you learn?

Python Programming: A Manual for Teachers of Leaving Certificate Computer Science Page 6

Syntax Check #2:

Use opening and closing brackets (parentheses) after the print command when you

want to display output. For every opening parenthesis there needs to be a matching

closing parenthesis.

Try running the following:

print "Hello World")

You will see a syntax error displayed in a message box like the one shown below because

the opening parenthesis is missing.

Experiment!

Try each of the following 3 lines separately.

What did you learn?

What happens if you put a space either side of the brackets?

Python Programming: A Manual for Teachers of Leaving Certificate Computer Science Page 7

Syntax Check #3:

When you want to display text using the print command, the text must to be enclosed

inside matching quotation marks. If either, or both, quotation marks are missing, a syntax

error message is displayed.

Experiment: Try each of the following lines separately.

print (Hello World)

print ("Hello World)

print (óHello Worldô)

print (" Hello World ô)

Quotation marks can be single (ô) or double (") ï it does not matter as long as they match.

Python is not too fussy about what you type inside quotation marks. Outside quotation

marks, Python is very limited in what it understands. One thing Python understands outside

quotation marks is number. Numbers do not have to be enclosed inside quotations.

Each of the following lines are syntactically correct. (Try them!)

KEY POINT: The technical word for text is string. A string is any text enclosed

inside quotation marks.

Notice from the fine three lines in the above example how print allows strings and

numbers to be separated by commas.

Write a Python program to display the text Hello, my name is Sam!

https://github.com/pdst-lccs/lccs-python/blob/master/Section 1 - Getting Started/print demo - age.py

Python Programming: A Manual for Teachers of Leaving Certificate Computer Science Page 8

Escape Sequences

Letôs say we wanted to display the following text exactly ï including the quotation marks.

In the words of Nelson Mandela, ñEducation is the most powerful weapon which we can use

to change the worldò

The line below does not work because in the óeyesô of Python the second quotation closes

the first and the remainder of the line is not understood.

To fix the syntax error we escape the second quotation using the backslash character, \, as

follows:

In the above example the use of \ " tells Python include the double quotes as part of the

string (as opposed to treating it as the closing quote).

The backslash character introduces an escape sequence in a string. Some common escape

sequence characters are illustrated in the table below:

Escape Sequence Meaning

\n Newline

\t Tab

\ô Single Quote

\ò Double Quote

\\ Backslash

https://github.com/pdst-lccs/lccs-python/blob/master/Section 1 - Getting Started/Esc Sequence1.py

Python Programming: A Manual for Teachers of Leaving Certificate Computer Science Page 9

Experiment!

Try the following and see if you can explain what is going on.

What was the main thing you learned in this section about escape

sequences?

What one question about escape sequences do you still have?

https://github.com/pdst-lccs/lccs-python/blob/master/Section 1 - Getting Started/Esc Sequence2.py

Python Programming: A Manual for Teachers of Leaving Certificate Computer Science Page 10

Flow of Control

The flow of control refers to the order in which the lines of a computer program are run by

the computer. Normally lines are executed in the same sequence in which they appear. This

type of flow is called sequential. We use the following four-line program to illustrate this

concept.

When this program is run, execution starts at line 1 which causes the string, As I was going

out one day, to be displayed on the output console. Execution then moves sequentially

through lines 2, 3 and 4 and finally, the program ends as there are no more lines to execute.

The table below illustrates the program output be after each line is executed.

Line Number Program Output

1 As I was going out one day

2
As I was going out one day

My head fell off and rolled away,

3

As I was going out one day

My head fell off and rolled away,

But when I saw that it was gone,

4

As I was going out one day

My head fell off and rolled away,

But when I saw that it was gone,

I picked it up and put it on.

In reality, we only see the final output after line 4 is executed ï this is because the program

is executed so fast by the computer. Nonetheless, it is important for students to understand

that for the computer to get to the final stage it had to pass through the other stages on the

way.

https://github.com/pdst-lccs/lccs-python/blob/master/Section 1 - Getting Started/Poem - As I waspy

Python Programming: A Manual for Teachers of Leaving Certificate Computer Science Page 11

Indentation

Indentation refers to the empty space(s) at the beginning of a line of code.

Python is very fussy about indentation - try to run the following:

Notice that the second line contains a leading space. This is an indentation error.

The following syntax error is displayed when a program contains an indentation error.

Syntax Check: Every line of Python code must be properly indented.

Proper indentation means logically related lines (called blocks of code) appear at the same

level of indentation.

In the above example indentation is not needed but ï as we will see later ï it is sometimes

necessary to indent code.

Python Programming: A Manual for Teachers of Leaving Certificate Computer Science Page 12

Programming Exercises

1. Write a program to display your own name and address.

2. Re-arrange the lines of code below into a program that displays the pattern shown on the

right. Note that you can use any line as often as you like, but you wonôt need to use

every line.

3. Reflect on what you have learned about Python so far. Use the space below to write

three things that Python likes and three things that Python does not like.

Python likes é

1.

2.

3.

Python does not like é

1.

2.

3.

Python Programming: A Manual for Teachers of Leaving Certificate Computer Science Page 13

BREAKOUT ACTIVITIES

The focus on these activities is on getting used to the Python programming environment and

in particular sequential flow of control.

BREAKOUT 1.1: Automated Teller Machine (ATM) Menu System

The Python program below displays the ATM menu shown on the right hand side.

Suggested Activities

1. Key in the above program or download it from GitHub and

- make some changes to the program (e.g. add/remove/edit a menu option)

- discuss traditional console menus vs. GUI/touch screen interfaces

- discuss possible logic behind the options

2. Design and implement a menu for some other application of your choice e.g. what are

the options on your favourite app? What additional options would you like?

(For this exercise it is useful to think of a system from an end-userôs perspective.)

https://github.com/pdst-lccs/lccs-python/blob/master/Section 1 - Getting Started/Breakouts/Breakout 1.1 - ATM/ATM menu.py

Python Programming: A Manual for Teachers of Leaving Certificate Computer Science Page 14

BREAKOUT 1.2: Turtle Graphics

Turtle graphics is a popular way for introducing programming to novice programmers. It was

part of the original Logo programming language developed by Wally Feurzig and Cynthia

Solomon in consultation with Seymour Paper in 1966.

The movements of the turtle graphic object can be compared to the movements that you

would see if you were looking down at a real turtle inside a rectangular shaped box. The

program below causes the shape/pattern shown to the right to be drawn out on the screen.

Program Listing Shape

Program Explanation

ü Line 1 tells Python to import a library called óturtleô. A library can be thought of as an

external Python program that contains useful code. fr om and import are two Python

keywords. When a library is imported into a program the functionality of that library can

then be used in that program.

ü The commands on lines 3 to 9 inclusive instruct Python to move the turtle forward and

turn it left/right until the shape is drawn.

Students should be reminded to close the turtle window once they have finished running

your program. The window can be closed by clicking on in the top right corner.

https://github.com/pdst-lccs/lccs-python/blob/master/Section 1 - Getting Started/Breakouts/Breakout 1.2 - Turtle Graphics/Turtle Shapes v1.py

Python Programming: A Manual for Teachers of Leaving Certificate Computer Science Page 15

Suggested Activities

1. Read lines 3-9 of the program and see if you can figure out how the shape is created

2. Type the program in and run it. (Warning! Do not save the program as turtle.py)

3. Insert comment on lines 5 ï 9 inclusive. (Lines 3 and 4 are already commented.)

4. Rearrange lines 3 - 9 into different orders and see if you can explain

the change in output. You can delete some lines if you wish.

5. Experiment with the numbers used on lines 3 ï 9 until you

understand what they mean. For example, you could change 100 to

50 on line 3, or change 90 to 45 on line 8.

6. Modify the program so that it displays the shape shown to the right

Some of the more common movement commands supported by the turtle library are

outlined below.

Command Explanation

forward(n)
This command moves the turtle forward by n units from whatever

position the turtle is facing at the time the command is issued

backward(n)

When this command is issued it moves the turtle in the opposite

direction to whatever direction the turtle is facing. The turtle is moved

by n units from its current position.

right(angle)
This command turns the turtle in a rightwards direction. The amount

of turn is specified by the programmer using angle .

left(angle)
This command turns the turtle in a leftwards direction. The amount of

turn is specified by the programmer using angle .

Python Programming: A Manual for Teachers of Leaving Certificate Computer Science Page 16

Further Activities

The default starting position for the turtle is the centre of the screen with an arrow pointing to

the right (i.e. east). It is up to the programmer to keep a track of the position of the turtle on

the screen and the direction it is facing.

The best way to learn how to use turtles is to experiment. The following exercise might help.

1. Match each code block (numbered below) to the corresponding shape (denoted by

letters).

1.

 A.

2.

 B.

3.

 C.

4.

 D.

Note: Before running any of the above blocks of code you will need to add the line

from turtle import * before the turtle commands.

https://github.com/pdst-lccs/lccs-python/blob/master/Section 1 - Getting Started/Breakouts/Breakout 1.2 - Turtle Graphics/Turtle Shapes v2 - block1.py
https://github.com/pdst-lccs/lccs-python/blob/master/Section 1 - Getting Started/Breakouts/Breakout 1.2 - Turtle Graphics/Turtle Shapes v2 - block2.py
https://github.com/pdst-lccs/lccs-python/blob/master/Section 1 - Getting Started/Breakouts/Breakout 1.2 - Turtle Graphics/Turtle Shapes v2 - block3.py
https://github.com/pdst-lccs/lccs-python/blob/master/Section 1 - Getting Started/Breakouts/Breakout 1.2 - Turtle Graphics/Turtle Shapes v2 - block4.py

Python Programming: A Manual for Teachers of Leaving Certificate Computer Science Page 17

2. Now demonstrate that your answers are correct!

Do this by keying in and running each of the separate code blocks.

3. The commands listed below can be used to change the appearance of turtle objects

Command Explanation

shape(s)

This command sets the appearance of the turtle object to be whatever

shape is specified by s . Valid values are arrow , turtle, circle ,

square , triangle and classic . (Use quotation marks.) The arrow

shape is the default.

hideturtle()
When this command is used it makes the turtle object disappear from

the output screen.

showturtle() This command makes the turtle visible again.

color(c)

This command sets the colour of the lines drawn by the turtle to be the

colour specified by ὧ. Try different values e.g. red , blue , green .

(Donôt forget to use quotation marks either side of the named colour.)

pensize(n)

This command sets the line thickness of the line drawn by turtle

movements. The value of n can be any number from 1 to 10 where 1 is

the thinnest and 10 is the thickest. Try it!

Write a Python program to display the shapes shown below.

A 50x50 square
A 50x100 red

rectangle

A vertical blue line of

length 100 units and

thickness 5 units

The letter T in red

(pen is hidden)

Can you come up with more than one solution for each shape? Compare and discuss your

solutions with your classmates.

Python Programming: A Manual for Teachers of Leaving Certificate Computer Science Page 18

BREAKOUT 1.2: Games Programming with pygame

pygame
1 is a free and open source Python library useful for games programming. As it does

not come with the standard Python installation, pygame needs to be installed separately.

When the program shown below is run it causes the output window illustrated to the right to

be displayed. The output window contains 5 different shapes ï a blue horizontal line, a green

diagonal line, a white rectangle, a red circle and red ellipse. These shapes are drawn in

response to the commands on lines 15 to 19.

Read the code carefully ï focus your attention on lines 15 to 19 (highlighted in bold) - and

see if you can guess which line of code is responsible for drawing which shape.

Program Listing Output Window

The individual lines of code are explained on the next page.

Programmers are often presented with code they have not written themselves and need to

figure out for themselves what the code does. One tried and trusted method used by

programmers to familiarise themselves with ónewô code is to óplay with itô i.e. make small

incremental changes to build up an understanding. Try the following suggested activities.

1 https://www.pygame.org

https://www.pygame.org/
https://github.com/pdst-lccs/lccs-python/blob/master/Section 1 - Getting Started/Breakouts/Breakout 1.3 - pygame/Pygame Shapes v1.py

Python Programming: A Manual for Teachers of Leaving Certificate Computer Science Page 19

Suggested Activities

1. Key in (or copy+paste from GitHub) the full program and make sure it runs properly.

2. Devise your own theories about the code. For example, you might suspect that line 15

draws the blue horizontal line. In order to test this theory, you could comment out lines

16, 17, 18 and 19 and then run your program to see if you are correct.

This process should be repeated until you have confirmed your understanding of which

line of code is responsible for which shape.

3. Experiment by rearranging lines 15-19 into different orders. Each time you jumble them

around, run your program to see if they make any difference to the output displayed.

4. Change the code so that the shapes are displayed in different colours

5. Modify the numbers used in the commands used to draw the lines and the rectangle

(lines 15, 16 and 17). Can you figure out what the numbers mean?

Co-ordinate System

The diagram below explains the window co-ordinate system used by pygame.

The co-ordinates of the four corners of a

window having width, ύ and height, Ὤ are:

πȟπ top left

ύȟπ top right

πȟὬ bottom left

ύȟὬ bottom right

window co-ordinate system used by pygame

Python Programming: A Manual for Teachers of Leaving Certificate Computer Science Page 20

Game Loop

You may have noticed that the output window

does not close. To fix this problem you will

need to make two changes

a) Modify line 1 as shown

b) Add the (game loop) code shown here to

the end of the program listing.

Program Explanation

ü Line 1 imports the pygame and sys libraries into the program. pygame contains

functionality that our program can use to draw shapes.

ü Line 4 tells Python to initialise (i.e. start) the pygame engine

ü Line 5 tells Python to create an output window of width 400 units and height 500 units

ü Lines 9 to 12 define the primary colours BLACK, RED, GREEN, BLUE and WHITE.

These names are now known to Python and can be used further down in the program.

ü Lines 15 instructs Python to draw a horizontal blue line. The co-ordinates of the start and

end positions are provided along with codes for the colour and line thickness.

ü Lines 16 instructs Python to draw a diagonal green line. The co-ordinates of the start and

end positions are provided along with codes for the colour and line thickness.

ü Lines 17 instructs Python to draw a white rectangle. The co-ordinates of the upper left

corner are provided along with values for the width and height.

ü Lines 21 tells Python update the display window with the new shapes.

Log your thoughts.

How has your knowledge of programming been extended so far?

Python Programming: A Manual for Teachers of Leaving Certificate Computer Science Page 21

Further pygame activities

1. The commands on lines 17, 18 and 19 draw a rectangle, circle and ellipse respectively.

Modify the numbers used inside the brackets. Can you figure out what the numbers

mean?

2. Study the program listing on the next page carefully.

When the program is run, it displays the first three rows of the pattern as shown.

The background is painted white by

the fill command, so, in actual

fact, the program draws four black

squares on each of the three rows.

Each individual black square is

drawn in response to the command

py game.draw.rect . The squares

are υπυπ units in size.

There is a problem however.

The programmer had intended the

program to display the chequer

board pattern shown here to the

right.

Can you make the necessary changes?

How might the program differ if the background was painted BLACK instead of white?

3. Calculate the co-ordinates of the centre of a 400x500 window.

Can you generalise this calculation with a formula that would work for a window of any

size?

4. Write a program to display a circle centred on the output window. (You choose the size!)

Generalise your solution so that it works for any window size.

Python Programming: A Manual for Teachers of Leaving Certificate Computer Science Page 22

Modify the program below so that it displays the first three rows of a proper chequer board

pattern.

import pygame, sys

from pygame.locals import *

start the pygame engine

pygame.init()

create a 400x400 window

window = pygame.display.set_mode((400, 400))

pygame.display.set_caption('Chequer Board')

define some colors

BLACK = (0, 0, 0)

WHITE = (255, 255, 255)

window.fill(WHITE) # paint the window white

Draw Row 1

pygame.draw.rect(window, BLACK, (0, 0, 50, 50))

pygame.draw.rect(window, BLACK, (100, 0, 50, 50))

pygame.draw.rect(window, BLACK, (200, 0, 50, 50))

pygame.draw.rect(window, BLACK, (300, 0, 50, 50))

Draw Row 1

pygame.draw.rect(window, BLACK, (0, 50, 50, 50))

pygame.draw.rect(window, BLACK, (150, 50, 50, 50))

pygame.draw.rect(window, BLACK, (200, 50, 50, 50))

pygame.draw.rect(window, BLACK, (350, 50, 50, 50))

Draw Row 1

pygame.draw.rect(window, BLACK, (50, 100, 50, 50))

pygame.draw.rect(window, BLACK, (100, 100, 50, 50))

pyg ame.draw.rect(window, BLACK, (300, 100, 50, 50))

pygame.draw.rect(window, BLACK, (350, 100, 50, 50))

update the window display

pygame.display.update()

run the game loop

while True:

 for event in pygame.event.get():

 if event.type == QUIT:

 pygame.quit()

 sys.exit()

https://github.com/pdst-lccs/lccs-python/blob/master/Section 1 - Getting Started/Breakouts/Breakout 1.3 - pygame/Display ChequerBoard (problem).py

Python Programming: A Manual for Teachers of Leaving Certificate Computer Science Page 23

Section 2

Data, Variables, Assignments and

Expressions

Python Programming: A Manual for Teachers of Leaving Certificate Computer Science Page 24

Introduction

So letôs say we wanted to write a program to display the name of a person and their favourite

colour in a greeting string and then display a personalised goodbye message. We could

write:

One problem with the above program is that the string Alex appears twice and this gives rise

to the possibility of a mismatch in spelling. It would be better if had some way of telling our

program to remember the personôs name. This can be done by using a variable.

KEY POINT: A variable is a programming construct used to store (remember) data.

The listing below uses two variables ï personN ame and favouriteColour .

The variable personName is used to store a personôs name and the variable

favouriteColour is used to store the personôs favourite colour.

The variables are declared on lines 1 and 2 respectively. Each line assigns the initial values

Alex and red to the respective variables.

KEY POINT: A variable must be declared before it can be used. By declaring a

variable you are telling Python here is a new word and this is its initial value.

Line 3 displays the contents of the variables in a greeting string. Notice that the names of the

variables appear outside the double quotations, and also the use of commas to delimit the

variables from the greeting string.

When Python comes across the variable names in the print command it substitutes the

values of the variables into the string to be displayed.

https://github.com/pdst-lccs/lccs-python/blob/master/Section 2 - Data (variables, assignments and expressions)/Fav Colour v1.py
https://github.com/pdst-lccs/lccs-python/blob/master/Section 2 - Data (variables, assignments and expressions)/Fav Colour v2.py

Python Programming: A Manual for Teachers of Leaving Certificate Computer Science Page 25

The name of the person or the colour can now be changed, simply by changing the value of

the variable. For example, we could write:

The program is considered better because the personôs name is stored in a variable and

needs to be keyed in by the programmer only once. However, the program still has a

problem in that it lacks generality i.e. it only works for one person and one colour. Every time

we want to display a different message we need to change the program.

A more general (and realistic) solution would be to ask the user to enter their name and

favourite colour. This can be achieved using the input command as follows:

Try running the above program for yourself.

The input command

The input command allows a user to enter a value into a running program and have that

value stored in a variable.

The string in brackets following the word input is displayed as a prompt to the end-user.

Every time the above program is run, whatever values are entered by the end-user are

stored in the variables personN ame and favouriteColour . These values are then

displayed in the output messages.

Without having to make any changes to the program, the output messages can vary on

every run. This is an example of a general solution to a problem.

The input (and print) commands are both examples of Python built in functions. The

complete list of Python built in functions can be found in the appendix.

https://github.com/pdst-lccs/lccs-python/blob/master/Section 2 - Data (variables, assignments and expressions)/Fav Colour v3.py

Python Programming: A Manual for Teachers of Leaving Certificate Computer Science Page 26

Variable Syntax

The general syntax for declaring a variable is made up of a left hand side and a right hand

side as follows:

<variable - name> = <expression>

The name of the variable appears on the left hand side and an expression appears on the

right hand side. The ó=ô symbol in the middle is the Python assignment operator.

KEY POINT: Although the symbols used to denote the Python assignment operator

and a mathematical equation are identical, they should not be confused as they

mean two completely different things.

The use of ó=ô in Python indicates an assignment statement. When Python comes across

an assignment statement it evaluates the expression on the right hand side first. The result

of this evaluation is then stored in the variable named on the left hand side.

The expression on the right hand side can be:

- a literal value such as a string or a number

- an arithmetic expression (which itself can contain variables)

- the name of a built-in command such as input , as seen in the previous example.

Python Programming: A Manual for Teachers of Leaving Certificate Computer Science Page 27

This is an exercise about vocabulary.

The graphic below shows six Python assignment statements and six

(incomplete) English sentences.

Complete the sentences on the right so that each one describes its

corresponding assignment statement on the left.

Once a variable has been declared the name is added to Pythonôs vocabulary for the

remainder of the program.

It is up to the programmer to decide what name to give their variables. The rules and

guidelines for naming variables are described on the next page.

Python Programming: A Manual for Teachers of Leaving Certificate Computer Science Page 28

Guidelines and Rules for Naming Variables

As a general guideline variable names should be simple and meaningful. A meaningful name

is one that tells something about what the variable is used for. The use of meaningful

variable names makes programs more readable and understandable to fellow programmers.

When choosing a name for a variable it can be helpful to think of a noun that describes the

purpose of the variable.

It is considered good practice to capitalise interior words in multi-word variable names. This

usage is referred to as camel case and first Name, addressLine1 , stockCount ,

highScore , and payRate are all examples of good variable names.

The syntax rules for naming variables are as follows:

ü A variable name cannot be Python keyword (e.g. ñimport ò ñdef ò, etc.)

ü Variable names must contain only letters, digits, and the underscore character, _.

ü Variable names cannot have a digit for the first character.

ü Spaces or dots are not allowed in a variable name

If Python comes across a name it does not understand it will display a syntax error.

Which of the following are ólegalô variable names?

a) student.Number

b) x

c) 1x

d) x1

e) input

f) number

g) 20

h) h20

i) PPSN

j) ppsn

k) person name

l) address

m) date_of_birth

n) 2+4

o) print

Python Programming: A Manual for Teachers of Leaving Certificate Computer Science Page 29

Datatypes and Operations

Programmers need to be aware of the type of data that their programs process. This is

referred to as datatype.

Thus far, we have encountered examples of both string and numeric datatypes. If, for

example, we wanted a program to store someoneôs name or favourite colour the variableôs

datatype would be string. On the other hand, a numeric datatype is the proper datatype for a

variable to store a personôs age or height.

Python supports several different types of numbers - integers, floating point numbers as well

as a range or more exotic types of numbers (e.g. complex numbers, fixed precision decimals

and rational numbers)

Every datatype in Python has a permissible set of operations that are only valid for that type.

(For this reason, Python is said to be a strongly typed language.) The numeric datatype

supports all the usual arithmetic operations such as addition, multiplication etc. These are

illustrated in the table below (assume x=7 and y=3)

The normal precedence rules for arithmetic operators apply.

Python Programming: A Manual for Teachers of Leaving Certificate Computer Science Page 30

Reflection

Reflect on what you have learned about variables, datatypes and expressions so far.

Use the space provided to document what extended your thinking

about variables, datatypes, and expressions

Indicate in the space below those areas relating to variables,

datatypes, and expressions that you donôt fully understand yet

Python Programming: A Manual for Teachers of Leaving Certificate Computer Science Page 31

Program Tracing

Computers can execute programs at a rate of millions of lines per second. The values of

variables can change so fast that programmers can easily lose track and sometimes find it

difficult to be sure that their program logic is correct. In order to combat this, programmers

often execute a program manually i.e. using pen and paper to keep track of variables line-

by-line. This activity, called program tracing is used by programmers to verify for themselves

that their program will do what it is intended to when it is run by the computer.

We trace through the program shown (as if we were the

computer) line-by-line, starting at line 1. Every time a

variable is declared for the first time we draw a box and

write the value of the variable in the box. When the value of

a variable changes we replace the old value with the new

one. This activity is called program tracing.

The Python code is shown on the left below and the variables are illustrated as boxes on the

right. The boxes are used to represent memory locations i.e. they are part of a notional

machine used by programmers to keep track of the state of their variables at runtime.

The program displays the contents of y i.e. 8

The program displays 9

The program displays 8

https://github.com/pdst-lccs/lccs-python/blob/master/Section 2 - Data (variables, assignments and expressions)/Fav Colour v3.py

Python Programming: A Manual for Teachers of Leaving Certificate Computer Science Page 32

Exercise: Program Tracing

Manually trace the programs shown below. (Use the space provided on

the next page.) Can you figure out what each program does?

PROGRAM 1

PROGRAM 2

PROGRAM 3

PROGRAM 4

PROGRAM 5

https://github.com/pdst-lccs/lccs-python/blob/master/Section 2 - Data (variables, assignments and expressions)/trace program 1.py
https://github.com/pdst-lccs/lccs-python/blob/master/Section 2 - Data (variables, assignments and expressions)/trace program 2.py
https://github.com/pdst-lccs/lccs-python/blob/master/Section 2 - Data (variables, assignments and expressions)/trace program 3.py
https://github.com/pdst-lccs/lccs-python/blob/master/Section 2 - Data (variables, assignments and expressions)/trace program 4.py
https://github.com/pdst-lccs/lccs-python/blob/master/Section 2 - Data (variables, assignments and expressions)/trace program 5.py

Python Programming: A Manual for Teachers of Leaving Certificate Computer Science Page 33

Tracing notes

Python Programming: A Manual for Teachers of Leaving Certificate Computer Science Page 34

Input-Process-Output

Many computer programs follow the input-process-output model as illustrated.

This means that a program accepts data as input, carries out some processing (usually a

calculation) and then displays and/or stores the output.

We already know the input command is used to prompt an end-user to enter a value into a

running program. The value entered can then be stored in a variable.

KEY POINT: programmers need to be acutely aware of the type of data with which

their program is working.

By default, the input command returns a string. This means that if you want your program

to accept numeric data from the end-user, the value entered must be converted from a string

to either an integer or a floating point (i.e. a decimal) number.

Fortunately, Python has two built-in commands that can perform these conversions. These

are called int and float respectively.

Built-in Function Description

int(s)
Converts the string ósô to an integer. The result is a new number
object

float(s)
Converts the string ósô to a floating point (decimal) number. The
result is a new floating point object

The two commands int and float are important because they allow Python to use values

entered by the end-user in arithmetic expressions.

Python Programming: A Manual for Teachers of Leaving Certificate Computer Science Page 35

Example ï Year of Birth

We want to write a program to calculate a personôs year of birth.

Our program will ask the end-user for two pieces of information - the current year and the

age they will be at the end of the current year.

We will store this data in two variables ï year and age .

Since year and age are both numeric we will need to instruct the program to convert them

from strings to integers. This can be done with the int command.

The solution is as follows.

Lines 1 and 2 both display a prompt asking the user to enter values and then convert these

values from strings to integers. The conversion from string to integer is needed here

because Python knows how to subtract numbers but cannot subtract strings.

Line 3 subtracts the two integers (to calculate the year of birth) and displays the result in an

output message.

Notice how both int and input are called on the same line. When commands are

combined together on the same line like this it is called function composition. Python

executes the innermost function first and then works back towards the leftmost function

which is executed last.

https://github.com/pdst-lccs/lccs-python/blob/master/Section 2 - Data (variables, assignments and expressions)/Year of Birth.py

Python Programming: A Manual for Teachers of Leaving Certificate Computer Science Page 36

It is important to understand the subtle difference between the string ñ2018ò and the numeric

value 2018. One difference is subtraction is supported for numbers but not for strings

KEY POINT: The operations that can be carried out on values are constrained by

the valueôs underlying object type. For example, subtraction is not supported for

strings.

Syntax Check: Try running the following program:

You will see an error like this:

Since the values are not converted to integers Python stores them as strings. The

expression year - age on line 3 is an attempt to subtract two strings which is not allowed in

Python. Python does not support the subtraction operation on strings.

It is also worth noting that numbers can be converted to string objects using the str

function. As an experiment try running the following lines of code separately:

This causes the following error to be displayed
TypeError: must be str, not int

This causes the string ñ200018ò to be displayed.

KEY POINT: The ó+ô operator for strings means concatenation.

