

Python Programming Page ii

Please cite as: PDST, Leaving Certificate Computer Science, Python Workshop, Dublin, 2018

Python Programming Page iii

Table of Contents

Section 1 – Getting Started 1

Hello World ……………………………………………………………………… 2

Language Syntax ……………………………………………………………..... 3

Basic Python Syntax …………………………………………………………… 5

Escape Sequences …………………………………………………………….. 8

Flow of Control ………………………………………………………………….. 10

Programming Exercises ……………………………………………………….. 12

BREAKOUT ACTIVITIES …………………………………………………… 13

Section 2 – Data, Variables, Assignments and Expressions 23

Introduction …………………………………………………………………….. 24

Variable Syntax ………………………………………………………………… 26

Datatypes and Operations ……………………………………………………. 29

Program Tracing ……………………………………………………………….. 31

Input-Process-Output ………………………………………………………….. 34

More Built in Functions ………………………………………………………… 40

The Remainder Operator (%) …………………………………………………. 41

Programming Exercises ……………………………………………………….. 43

Running Totals ………………………………………………………………….. 45

Introducing Random Numbers ………………………………………………… 47

Additional Notes ………………………………………………………………… 49

BREAKOUT ACTIVITIES ……………………………………………………… 51

Section 3 – Strings 63

Introduction ……………………………………………………………………… 64

String Indexing ………………………………………………………………….. 66

String Slicing ……………………………………………………………………. 70

String Addition and Multiplication …………………………………………….. 71

String Formatting ………………………………………………………………. 74

Built-in String Commands …………………………………………………….. 76

Coding Systems ……………………………………………………………….. 77

Programming Exercises ……………………………………………………….. 79

String Methods ………………………………………………………………….. 80

Python Programming Page iv

Additional Notes (Sequences) ………………………………………………… 83

BREAKOUT ACTIVITIES ……………………………………………………… 85

Section 4 – Lists 95

Introduction ……………………………………………………………………… 96

Creating Lists …………………………………………………………………… 97

Common List Operations ………………………………………………………. 99

List Indexing ……………………………………………………………………. 101

List Slicing ……………………………………………………………………….. 105

List Methods …………………………………………………………………….. 109

Two More String Methods (split and splitlines) …………………….. 111

BREAKOUT ACTIVITIES ……………………………………………………… 113

Section 5 – Programming Logic 120

Introduction ……………………………………………………………………… 121

Hangman! ……………………………………………………………………….. 122

Boolean Expressions …………………………………………………………… 124

The Guessing Game …………………………………………………………… 128

Selection (if, else, elif) ……………………………………………… 129

BREAKOUT ACTIVITIES (selection) ……………………………………….. 138

Iteration (for, while) ………………………………………………………... 141

BREAKOUT ACTIVITIES (iteration) 160

Section 6 – Modular Programming Using Functions 168

Introduction ……………………………………………………………………… 169

Basic Function Syntax …………………………………………………………. 177

Function Parameters and Arguments ………………………………………… 182

Function Return Values ……………...………………………………………… 187

Examples and Exercises …………...………………………………………….. 190

Boolean Functions ……………...………………………………………………. 194

Using Functions to Validate Data ……………………………………………... 199

Programming Exercises ……………...………………………………………... 201

Recursion ……………...………………………………………………………… 205

Final Programming Exercises ……………...…………………………………. 210

BREAKOUT ACTIVITY 6.1 (ATM System) ………………………………….. 214

Python Programming Page v

BREAKOUT ACTIVITY 6.2 (Summing Numbers) …………………………... 224

BREAKOUT ACTIVITY 6.3 (Turtle Graphics) ……………………………….. 228

BREAKOUT ACTIVITY 6.4 (Check Digits) …………………………………... 234

Section 7 – Dictionaries 242

Introduction ……………………………………………………………………… 243

Dictionary Definitions – some examples ……………………………………... 244

Creating Dictionaries – syntax ………………………………………………… 247

Indexing Dictionaries …………………………………………………………… 249

Adding, Changing and Deleting Dictionary Elements ………………………. 255

Programming Exercises ……………...………………………………………... 263

Iterating over dictionaries ……………………………………………………… 268

Dictionaries and Lists …………………………………………………………... 271

BREAKOUT ACTIVITY 7.1 (Frequency Counters) …………………………. 273

Appendices 280

Python Keywords and Built-in Functions …………………………………….. 281

Python Operators ………………………………………………………………. 282

Python Programming Page vi

Manual Overview

The purpose of this manual to provide Phase One Leaving Certificate Computer Science

(LCCS) teachers with the knowledge, skills and confidence to design and develop Python

programs independently.

Although the manual will serve as support material for teachers who attend the Python

Fundamental Skills Workshop component of our two-year CPD programme, it is envisaged

that its real value will only come into play in the months after the workshops have been

delivered. Beyond these workshops, the manual may be used as a basic language reference

for Python, but more importantly, as a teaching resource that might be used to promote in

teachers, a constructivist pedagogic orientation towards the planning and teaching of Python

in the LCCS classroom.

The manual itself is divided into 5 separate sections - sections 1 and 2 cover basic, beginner

programming concepts, sections 3 and 4 cover novice programming constructs, and section

5 covers intermediate level programming techniques. This manual does not cover any

advanced Python programming topics.

Section 1 – Getting Started

The aim of this section is to get participants up and running. By the end of this section

participants should have a basic understanding of program execution, sequential processing,

strings, escape sequences and the importance of language syntax. Participants will have the

opportunity to write and modify simple programs. The section concludes with a practical

lab/breakout session which introduces turtle graphics and games programming using the

pygame library.

Section 2 – Variables, Assignments and Expressions

This section will provide participants with a broad overview of the use of variables,

assignments and expressions. Participants will have the opportunity to learn how to initialise

simple variables as well as use an assignment statement to change its value. The

importance of data and datatype is made clear. Arithmetic expressions and the input

command are introduced. Participants learn how to apply these concepts through program

tracing, testing, the use of the remainder (modulus) operator, running totals and random

numbers. The section concludes with a practical lab/breakout session which as well as

Python Programming Page vii

building on some of the ‘projects’ started in Section 1, introduces some basic file i/o

operations.

Section 3 – Strings

In this section we will cover strings – basic sequence operations such as concatenation,

multiplication, indexing and slicing will be explained. Example programs will extend thinking

on coding systems and ciphers, and draw on the use the use of built-in functions - ord and

chr. String specific methods and formatting will also be explained. Participants will be given

a hands-on tour of the official online Python reference at https://docs.python.org/3/. The

section concludes with a practical lab/breakout session where participants will be given an

opportunity to write programs to generate web pages and analyse text from live RSS feeds.

Section 4 –Lists

The aim of this section is to extend participants knowledge of sequences through the

concept of lists. Motivation is provided through a discussion on the many real-world

applications of lists. List construction, indexing and slicing are explored in greater detail. The

section describes the most common list specific methods and how to use them. Examples of

how to use split and splitlines to generate lists are provided. The breakout activities

at the end of this section includes the use of lists to construct random sentences, further

statistical analysis of data read in from a file of people’s heights, and finally, a program to

use lists as a basis for giving directions to a graphic turtle object.

Section 5 – Programming Logic (selection/conditions and iteration/loops)

This section explains the syntax and semantics of a number of programming constructs such

as if, elif, else, while and for statements. The emphasis throughout is on application

i.e. recognising situations where it is more appropriate to one of these control structures over

the other. Many of the examples are layered, based on a guessing game program. The

section concludes with a breakout session where participants will be able to consolidate their

learning and further develop their project work from the previous breakout sessions. The use

of plotly to present data in graphical format will also be introduced.

Section 6 – Modular Programming using Functions

The purpose of this section of the manual is to explain how functions can be used to

organise programs into logically related units of code. The architecture of a typical Python

program is presented and user-defined function are distinguished from built-in and library

functions. The syntax and semantics for defining and calling functions is explained as is the

https://docs.python.org/3/

Python Programming Page viii

use of arguments/parameters to pass information into functions and return values to pass

information out of functions. The examples build on the programming concepts covered in

earlier sections and cover topics such as temperature/distance conversions, compound

interest/future value calculations, and maximum values. The use of Boolean functions to

perform tests such as to determine whether a number is prime or a given year a leap as well

as to validate data is explained. The chapter contains many programming exercises

designed to elicit the use of functions and structured programming and the topic of recursion

is also explored in some detail. The section concludes with a number of practical

lab/breakout session which can be adapted for use in the LCCS classroom.

Section 7 – Dictionaries

The purpose of this chapter is to provide a full overview of the dictionary data structure.

Particular emphasis is placed on discussing the similarities and differences between lists

and dictionaries. The final breakout session – based on frequency counting – is designed to

elicit the computational thinking skills such as abstraction, pattern recognition,

decomposition and algorithmic thinking.

Python Programming Page ix

Conventions

To help with navigation through this manual, the following conventions are used:

 Italics are used to highlight important new words and phrases defined

 Courier New font is used to denote Python code such as keywords, commands and

variable names

The icons illustrated below are used to highlight different types of information throughout this

manual.

Space for participants to answer questions using pen and paper.

Python syntax rule.

Key technical point. A specific piece of information relating to some

aspect of programming

Experiment. An opportunity to change code and see what happens.

Programming exercises. An opportunity for individuals/pairs to

practice their Python programming skills

Breakout Group Work. At the end of every section, participants will

work in groups on a number of themed projects relevant to that

section. The tasks become increasingly difficult as the workshop

develops.

Reflection log. A space for participants to reflect on their learning and

log their thoughts.

Blocks like the one shown above contain

example Python code

Boxes like these contain key messages to

pass on to novice programming students.

Python Programming Page 1

Section 1

Getting Started

Python Programming Page 2

Installation and Setup

All of the examples in this manual were tested using Python 3.6.4. An installation of Python

3.x and IDLE should be sufficient for this workshop. As the workshop progresses it will be

necessary to install certain language extensions such as pygame and plotly.

Hello World

From IDLE create a new file (File -> New)

Type the following Python statement exactly as it appears here:

Save the file (File -> Save) and press F5 to run.

If you see the text Hello World displayed in the shell window congratulations – you are up

and running. The shell window displays the output of the program.

Throughout this course we will be creating new files, typing in and testing Python code which

is provided. The aim is to get to the point where we can write our own code.

As teachers we should keep in mind that learning to program for the first time can be tricky –

there can be lots of stuff going on at the same time, and understanding the syntax of Python

can often seem to be more important than the real purpose of programming which is to

automate solutions to well defined problems.

The sooner students overcome the initial syntax barrier, the sooner they can focus on the

skill of problem solving and specifically the skill of using the features of Python to solve

problems.

Teachers should continually emphasise to novice programmers that Python is just a tool,

and the key skill lies in its application to solve problems.

Python Programming Page 3

Another point well worth getting across to novice programmers at an early stage is the

difference between programmers and end-users.

 Programmers usually work as part of a team. They write and test the code that makes up

a computer system. Student programmers should be encouraged to bear the needs of

the end-user in mind i.e. see the system from the perspective of the end-user.

 An end-user is the person (or organisation) for whom a software system is developed.

End-users are the customers and, very often, do not know how to program.

Language Syntax

Most of us are already aware that natural languages such as English, French, German,

Polish etc. have their own rules. These rules make up the language grammar. The syntax of

a language is that part of the grammar which defines how sentences are constructed –

syntax is mostly concerned with legitimate words, symbols and the order in which they are

used.

In a similar way, all programming languages (e.g. Python, Java, JavaScript, C++, PHP, Perl

etc.) have their own syntax – this is called the language syntax.

One important aspect of Python’s syntax is its vocabulary i.e. the words and symbols that

Python understands.

Words can be keywords or commands. The list of all of Python’s 33 keywords is given below

– only some of these will be needed for LCCS.

False break else if not while

None class except import for with

True continue finally in pass yield

and def for is raise

as del from lambda return

assert elif global nonlocal try

Python 3.6.2 keywords

Programmers can add to Python’s vocabulary by defining their own words.

Python Programming Page 4

The most common kinds of symbols in Python are operators – these can be arithmetic or

relational.

Python also understands white spaces (e.g. spaces, tabs, newlines), numbers and strings

(anything enclosed in quotation marks) – more on these later.

All programs must adhere to the syntax of the programming language in which they are

written. When a program does not conform to the language’s syntax it is said to contain a

syntax error. Such programs are said to be syntactically incorrect.

When you try to run a program that has a syntax error, Python displays a syntax error

message.

Comments are a way to tell Python to ignore syntax. They are used by programmers to

improve the readability of their code for the benefit of other programmers. Comments in

Python start with the hash character, # , and extend to the end of the physical line. When

Python comes across the hash character it ignores the rest of the text on that line

Reflection

Reflect on what you have learned about Python so far.

Use the space below to write five things that Python understands.

1.

2.

3.

4.

5.

Python Programming Page 5

Basic Python Syntax

We will now take a look at some of the basic syntax rules of Python and illustrate what

happens when these rules are broken.

Experiment!

Try the following line.

Make some changes - what happens?

What did you learn?

Python Programming Page 6

Write a Python program to display the text Hello, my name is Sam!

Experiment!

Try each of the following 3 lines separately.

What did you learn?

What happens if you put a space either side of the brackets?

Python Programming Page 7

Syntax Check: When you want to display text using the print command, the text must to

be enclosed inside matching quotation marks. If either, or both, quotation marks are missing

a syntax error message is displayed.

Experiment: Try each of the following lines separately.

print(Hello World)

print("Hello World)

print(‘Hello World’)

print("Hello World)

Quotation marks can be single (’) or double (") – it does not matter as long as they match.

What one question do you have so far?

KEY POINT: The technical word for text is string. A string is any text enclosed

inside quotation marks.

Python is not too fussy about what you type inside quotation marks. Outside quotation

marks, Python is very limited in what it understands. One thing Python understands outside

quotation marks is number. Numbers do not have to be enclosed inside quotations.

Each of the following lines are syntactically correct. (Try them!)

Notice from the last three examples how print allows strings and numbers to be separated

by commas.

Python Programming Page 8

Escape Sequences

Let’s say we wanted to display the following text exactly – including the quotation marks.

In the words of Nelson Mandela, “Education is the most powerful weapon which we can use

to change the world”

The line below does not work because in the ‘eyes’ of Python the second quotation closes

the first and the remainder of the line is not understood.

To fix the syntax error we escape the second quotation using the backslash character, \, as

follows:

In the above example the use of \" tells Python include the double quotes as part of the

string (as opposed to treating it as the closing quote).

The backslash character introduces an escape sequence in a string. Some common escape

sequence characters are illustrated in the table below:

Escape Sequence Meaning

\n Newline

\t Tab

\’ Single Quote

\” Double Quote

\\ Backslash

Python Programming Page 9

Experiment!

Try the following and see if you can explain what is going on.

What was the main thing you learned in this section about escape

sequences?

What one question about escape sequences do you still have?

Python Programming Page 10

Flow of Control

The flow of control refers to the order in which the lines of a computer program are run by

the computer. Normally lines are executed in the same sequence in which they appear. This

type of flow is called sequential. We use the following four-line program to illustrate this

concept.

When this program is run, execution starts at line 1 which causes the string, As I was going

out one day, to be displayed on the output console. Execution then moves sequentially

through lines 2, 3 and 4 and finally, the program ends as there are no more lines to execute.

The table below illustrates the program output be after each line is executed.

Line Number Program Output

1 As I was going out one day

2
As I was going out one day

My head fell off and rolled away,

3

As I was going out one day

My head fell off and rolled away,

But when I saw that it was gone,

4

As I was going out one day

My head fell off and rolled away,

But when I saw that it was gone,

I picked it up and put it on.

In reality, we only see the final output after line 4 is executed – this is because the program

is executed so fast by the computer. Nonetheless, it is important for students to understand

that for the computer to get to the final stage it had to pass through the other stages on the

way.

Python Programming Page 11

Indentation

Indentation refers to the empty space(s) at the beginning of a line of code.

Python is very fussy about indentation - try to run the following:

Notice that the second line contains a leading space. This is an indentation error.

The following syntax error is displayed when a program contains an indentation error.

Syntax Check: Every line of Python code must be properly indented.

Proper indentation means logically related lines (called blocks of code) appear at the same

level of indentation.

In the above example indentation is not needed but – as we will see later – it is sometimes

necessary to indent code.

Python Programming Page 12

Programming Exercises

1. Write a program to display your own name and address.

2. Re-arrange the lines of code below into a program that displays the pattern shown on the

right. Note that you can use any line as often as you like, but you won’t need to use

every line.

3. Reflect on what you have learned about Python so far. Use the space below to write

three things that Python likes and three things that Python does not like.

Python likes …

1.

2.

3.

Python does not like …

1.

2.

3.

Python Programming Page 13

BREAKOUT ACTIVITIES

The focus on these activities is on getting used to the Python programming environment and

in particular sequential flow of control.

BREAKOUT 1.1: Automated Teller Machine (ATM) Menu System

The Python program below displays the ATM menu shown on the right hand side.

Suggested Activities

1. Key in the above program and …..

- Suggest and make changes to the program (e.g. add/remove/edit a menu option)

- Discuss traditional console menus vs. GUI/touch screen interfaces

- Discuss possible logic behind the options

2. Design and implement a menu for some other application of your choice. (For this

exercise you will need to think of a system from an end-user’s perspective.)

Python Programming Page 14

BREAKOUT 1.2: Turtle Graphics

Turtle graphics is a popular way for introducing programming to novice programmers. It was

part of the original Logo programming language developed by Wally Feurzig and Seymour

Papert in 1966.

The movements of the turtle graphic object can be compared to the movements that you

would see if you were looking down at a real turtle inside a rectangular shaped box. The

program below causes the shape/pattern shown to the right to be drawn out on the screen.

Program Listing Shape

Program Explanation

 Line 1 tells Python to import a library called ‘turtle’. A library can be thought of as an

external Python program that contains useful code. import is a Python keyword. When

a library is imported into a program the functionality of that library can then be used in

that program.

 Line 4 tells Python to create the turtle graphic object and refer to it as ‘pen’

 Line 5 tells Python to create the window in which the turtle’s movements can be seen.

 The commands on lines 9 to 15 inclusive (these lines are highlighted in bold) instruct

Python to move and turn the turtle.

 Line 18 tells Python to keep displaying the window until it is closed by the end-user.

Students should be reminded to close the turtle window once they have finished running

your program. The window can be closed by clicking on in the top right corner.

Python Programming Page 15

Suggested Activities

1. Read lines 9-15 of the program and see if you can figure out how the shape is created

2. Type the program in and run it. (Warning! Do not save the program as turtle.py)

3. Insert comment on lines 11 – 15 inclusive. (Lines 9 and 10 are already commented.)

4. Move the lines between 9 and 15 around into different order the

lines and see if you can explain the change in output

5. Experiment with the numbers used on lines 9 – 15 until you

understand what the different numbers mean.

6. Modify the program so that it displays the shape shown to the right

Some of the more common movement commands supported by turtle are outlined below.

Command Explanation

forward(n)
This command moves the turtle forward by n units from whatever

position the turtle is facing at the time the command is issued

backward(n)

When this command is issued it moves the turtle in the opposite

direction to whatever direction the turtle is facing. The turtle is moved

by n units from its current position.

right(angle)
This command turns the turtle in a rightwards direction. The amount

of turn is specified by the programmer using angle.

left(angle)
This command turns the turtle in a leftwards direction. The amount of

turn is specified by the programmer using angle.

The syntax to use any of the above commands is as follows - note the dot in the middle.

<turtle-name>.<command>

In this example the programmer’s name for the turtle is pen.

Python Programming Page 16

Further Activities

The default starting position for the turtle is the centre of the screen. It is up to the

programmer to keep a track of the position of the turtle on the screen and the direction it is

facing. The best way to learn how to use turtles is to experiment. The following exercise

might help.

1. Match the code blocks below to the corresponding shape.

Python Programming Page 17

2. Now demonstrate that your answers are correct!

Do this by keying in and running each of the separate code blocks.

3. The commands listed below can be used to change the appearance of turtle objects

Command Explanation

shape(s)

This command sets the appearance of the turtle object to be whatever

shape is specified by s. Valid values are arrow, turtle, circle,

square, triangle and classic. (Use quotation marks.) The arrow

shape is the default.

hideturtle()
When this command is used it makes the turtle object disappear from

the output screen.

showturtle() This command makes the turtle visible again.

color(c)

This command sets the colour of the lines drawn by the turtle to be the

colour specified by 𝑐. Try different values e.g. red, blue, green.

(Don’t forget to use quotation marks either side of the named colour.)

pensize(n)

This command sets the line thickness of the line drawn by turtle

movements. The value of n can be any number from 1 to 10 where 1 is

the thinnest and 10 is the thickest. Try it!

Write a Python program to display the shapes shown below.

A 50x50 square
A 50x100 red

rectangle

A vertical blue line of

length 100 units and

thickness 5 units

The letter T in red

(pen is hidden)

Can you come up with more than one solution for each shape? Compare and discuss your

solutions with your classmates.

Python Programming Page 18

BREAKOUT 1.2: Games Programming with pygame

pygame
1 is a free and open source Python library useful for games programming. As it does

not come with the standard Python installation, pygame needs to be installed separately.

When the program shown below is run it causes the output window illustrated to the right to

be displayed. The output window contains 5 different shapes – a blue horizontal line, a green

diagonal line, a white rectangle, a red circle and red ellipse. These shapes are drawn in

response to the commands on lines 15 to 19.

Read the code carefully – focus your attention on lines 15 to 19 (highlighted in bold) - and

see if you can guess which line of code is responsible for drawing which shape.

Program Listing Output Window

The individual lines of code are explained on the next page.

Programmers are often presented with code they have not written themselves and need to

figure out for themselves what the code does. One tried and trusted method used by

programmers to familiarise themselves with ‘new’ code is to ‘play with it’ i.e. make small

incremental changes to build up an understanding. Try the following suggested activities.

1 https://www.pygame.org

https://www.pygame.org/

Python Programming Page 19

Suggested Activities

1. Key in the full program and make sure it runs properly.

2. Devise your own theories about the code. For example, you might suspect that line 15

draws the blue horizontal line. In order to test this theory, you could comment out lines

16, 17, 18 and 19 and then run your program to see if you are correct.

This process should be repeated until you have confirmed your understanding of which

line of code is responsible for which shape.

3. Experiment by rearranging lines 15-19 into different orders. Each time you jumble them

around, run your program to see if they make any difference to the output display.

4. Change the code so that the shapes are displayed in different colours

5. Modify the numbers used in the commands used to draw the lines and the rectangle

(lines 15, 16 and 17). Can you figure out what the numbers mean?

Co-ordinate System

The diagram below explains the window co-ordinate system used by pygame.

The co-ordinates of the four corners of a

window having width, 𝑤 and height, ℎ are:

(0, 0) top left

(𝑤, 0) top right

(0, ℎ) bottom left

(𝑤, ℎ) bottom right

window co-ordinate system used by pygame

Python Programming Page 20

Game Loop

You may have noticed that the output window

does not close. To fix this problem you will

need to make two changes

a) Modify line 1 as shown

b) Add the (game loop) code shown here to

the end of the program listing.

Program Explanation

 Line 1 imports the pygame library into the program. pygame contains functionality that

our program can use to draw shapes.

 Line 4 tells Python to initialise (i.e. start) the pygame engine

 Line 5 tells Python to create an output window of width 400 units and height 500 units

 Lines 9 to 12 define the primary colours BLACK, RED, GREEN, BLUE and WHITE.

These names are now known to Python and can be used further down in the program.

 Lines 15 instructs Python to draw a horizontal blue line. The co-ordinates of the start and

end positions are provided along with codes for the colour and line thickness.

 Lines 16 instructs Python to draw a diagonal green line. The co-ordinates of the start and

end positions are provided along with codes for the colour and line thickness.

 Lines 17 instructs Python to draw a white rectangle. The co-ordinates of the upper left

corner are provided along with values for the width and height.

 Lines 21 tells Python update the display window with the new shapes.

Log your thoughts.

How has your knowledge of programming been extended so far?

Python Programming Page 21

Further pygame activities

1. The commands on lines 17, 18 and 19 draw a rectangle, circle and ellipse respectively.

Modify the numbers used inside the brackets. Can you figure out what the numbers

mean?

2. Study the program listing on the next page carefully.

When the program is run, it displays the first three rows of the pattern as shown.

The background is painted white by

the fill command, so, in actual

fact, the program draws four black

squares on each of the three rows.

Each individual black square is

drawn in response to the command

pygame.draw.rect. The squares

are 50 × 50 units in size.

There is a problem however.

The programmer had intended the

program to display the chequer

board pattern shown here to the

right.

Can you make the necessary changes?

How might the program differ if the background was painted BLACK instead of white?

3. Calculate the co-ordinates of the centre of a 400x500 window.

Can you generalise this calculation with a formula that would work for a window of any

size?

4. Write a program to display a circle centred on the output window. (You choose the size!)

Generalise your solution so that it works for any window size.

Python Programming Page 22

Modify the program below so that it displays the first three rows of a proper chequer board

pattern.

import pygame, sys

from pygame.locals import *

start the pygame engine

pygame.init()

create a 400x400 window

window = pygame.display.set_mode((400, 400))

pygame.display.set_caption('Chequer Board')

define some colors

BLACK = (0, 0, 0)

WHITE = (255, 255, 255)

window.fill(WHITE) # paint the window white

Draw Row 1

pygame.draw.rect(window, BLACK, (0, 0, 50, 50))

pygame.draw.rect(window, BLACK, (100, 0, 50, 50))

pygame.draw.rect(window, BLACK, (200, 0, 50, 50))

pygame.draw.rect(window, BLACK, (300, 0, 50, 50))

Draw Row 1

pygame.draw.rect(window, BLACK, (0, 50, 50, 50))

pygame.draw.rect(window, BLACK, (150, 50, 50, 50))

pygame.draw.rect(window, BLACK, (200, 50, 50, 50))

pygame.draw.rect(window, BLACK, (350, 50, 50, 50))

Draw Row 1

pygame.draw.rect(window, BLACK, (50, 100, 50, 50))

pygame.draw.rect(window, BLACK, (100, 100, 50, 50))

pygame.draw.rect(window, BLACK, (300, 100, 50, 50))

pygame.draw.rect(window, BLACK, (350, 100, 50, 50))

update the window display

pygame.display.update()

run the game loop

while True:

 for event in pygame.event.get():

 if event.type == QUIT:

 pygame.quit()

 sys.exit()

Python Programming Page 23

Section 2

Data, Variables, Assignments and

Expressions

Python Programming Page 24

Introduction

So let’s say we wanted to write a program to display the name of a person and their favourite

colour in a greeting string and then displays a personalised goodbye message. We could

write:

One problem with the above program is that the string Alex appears twice and this gives rise

to the possibility of a mismatch in spelling. It would be better if had some way of telling our

program to remember the person’s name. This can be done by using a variable.

KEY POINT: A variable is a programming construct used to store (remember) data.

The listing below uses two variables – personName and favouriteColour.

The variable personName is used to store a person’s name and the variable

favouriteColour is used to store the person’s favourite colour.

The variables are declared on lines 1 and 2 respectively. Each line assigns the initial values

Alex and red to the respective variables.

KEY POINT: A variable must be declared before it can be used. By declaring a

variable you are telling Python here is a new word and this is its initial value.

Line 3 displays the contents of the variables in a greeting string. Notice that the names of the

variables appear outside the double quotations, and also the use of commas to delimit the

variables from the greeting string.

When Python comes across the variable names in the print command it substitutes the

values of the variables into the string to be displayed.

Python Programming Page 25

The name of the person or the colour can now be changed, simply by changing the value of

the variable. For example, we could write:

The program is considered better because the person’s name is stored in a variable and

needs to be keyed in by the programmer only once. However, the program still has a

problem in that it lacks generality i.e. it only works for one person and one colour. Every time

we want to display a different message we need to change the program.

A more general (and realistic) solution would be to ask the user to enter their name and

favourite colour. This can be achieved using the input command as follows:

Key in and run the above program for yourself.

The input command

The input command allows a user to enter a value into a running program and have that

value stored in a variable.

The string in brackets following the word input is displayed as a prompt to the end-user.

Every time the above program is run, whatever values are entered by the end-user are

stored in the variables personName and favouriteColour. These values are then

displayed in the output messages.

Without having to make any changes to the program, the output messages can vary on

every run. This is an example of a general solution to a problem.

The input (and print) commands are both examples of Python built in functions. The

complete list of Python built in functions can be found in the appendix.

Python Programming Page 26

Variable Syntax

The general syntax for declaring a variable is made up of a left hand side and a right hand

side as follows:

<variable-name> = <expression>

The name of the variable appears on the left hand side and an expression appears on the

right hand side. The ‘=’ symbol in the middle is the Python assignment operator.

KEY POINT: Although the symbols used to denote the Python assignment operator

and a mathematical equation are identical, they should not be confused as they

mean two completely different things.

The use of ‘=’ in Python indicates an assignment statement. When Python comes across

an assignment statement it evaluates the expression on the right hand side first. The result

of this evaluation is then stored in the variable named on the left hand side.

The expression on the right hand side can be:

- a literal value such as a string or a number

- an arithmetic expression (which itself can contain variables)

- the name of a built-in command such as input, as seen in the previous example.

Python Programming Page 27

This is an exercise about vocabulary.

The graphic below shows seven Python assignment statements and

seven (incomplete) English sentences.

Complete the sentences so that they can be matched up to exactly one

of the assignment statements. Note that one of the sentences is

incorrect and cannot be matched.

Once a variable has been declared the name is added to Python’s vocabulary for the

remainder of the program.

It is up to the programmer to decide what name to give their variables. The rules and

guidelines for naming variables are described on the next page.

Python Programming Page 28

Guidelines and Rules for Naming Variables

As a general guideline variable names should be simple and meaningful. A meaningful name

is one that tells something about what the variable is used for. The use of meaningful

variable names makes programs more readable and understandable to fellow programmers.

When choosing a name for a variable it can be helpful to think of a noun that describes the

purpose of the variable.

It is considered good practice to capitalise interior words in multi-word variable names. This

usage is referred to as camel case and firstName, addressLine1, stockCount,

highScore, and payRate are all examples of good variable names.

The syntax rules for naming variables are as follows:

 A variable name cannot be Python keyword (e.g. “import” “def”, etc.)

 Variable names must contain only letters, digits, and the underscore character, _.

 Variable names cannot have a digit for the first character.

 Spaces or dots are not allowed in a variable name

If Python comes across a name it does not understand it will display a syntax error.

Which of the following are ‘legal’ variable names?

a) student.Number

b) x

c) 1x

d) x1

e) input

f) number

g) 20

h) h20

i) PPSN

j) ppsn

k) person name

l) address

m) date_of_birth

n) 2+4

o) print

Python Programming Page 29

Datatypes and Operations

Programmers need to be aware of the type of data that their programs process. This is

referred to as datatype.

Thus far, we have encountered examples of both string and numeric datatypes. If, for

example, we wanted a program to store someone’s name or favourite colour the variable’s

datatype would be string. On the other hand, a numeric datatype is the proper datatype for a

variable to store a person’s age or height.

Python supports several different types of numbers - integers, floating point numbers as well

as a range or more exotic types of numbers (e.g. complex numbers, fixed precision decimals

and rational numbers)

Every datatype in Python has a permissible set of operations that are only valid for that type.

(For this reason, Python is said to be a strongly typed language.) The numeric datatype

supports all the usual arithmetic operations such as addition, multiplication etc. These are

illustrated in the table below (assume x=7 and y=3)

The normal precedence rules for arithmetic operators apply.

Python Programming Page 30

Reflection

Reflect on what you have learned about variables, datatypes and expressions so far.

Use the space provided to document what extended your thinking

about variables, datatypes, and expressions

Indicate in the space below those areas relating to variables,

datatypes, and expressions that you don’t fully understand yet

Python Programming Page 31

Program Tracing

Computers can execute programs at a rate of millions of lines per second. The values of

variables can change so fast that programmers can easily lose track and sometimes find it

difficult to be sure that their program logic is correct. In order to combat this, programmers

often execute a program manually i.e. using pen and paper to keep track of variables line-

by-line. This activity, called program tracing is used by programmers to verify for themselves

that their program will do what it is intended to when it is run by the computer.

We trace through the program shown (as if we were the

computer) line-by-line, starting at line 1. Every time a

variable is declared for the first time we draw a box and

write the value of the variable in the box. When the value of

a variable changes we replace the old value with the new

one. This activity is called program tracing.

The Python code is shown on the left below and the variables are illustrated as boxes on the

right.

The program displays the contents of y i.e. 8

The program displays 9

The program displays 8

Python Programming Page 32

Exercise: Program Tracing

Manually trace the programs shown below. (Use the space provided on

the next page.) Can you figure out what each program does?

PROGRAM 1

PROGRAM 2

PROGRAM 3

PROGRAM 4

PROGRAM 5

Python Programming Page 33

Tracing notes

Python Programming Page 34

Input-Process-Output

Many computer programs follow the input-process-output model as illustrated.

This means that a program accepts data as input, carries out some processing (usually a

calculation) and then displays and/or stores the output.

We already know the input command is used to prompt an end-user to enter a value into a

running program. The value entered can then be stored in a variable.

KEY POINT: programmers need to be acutely aware of the type of data with which

their program is working.

By default, the input command returns a string. This means that if you want your program

to accept numeric data from the end-user, the value entered must be converted from a string

to either an integer or a floating point (i.e. a decimal) number.

Fortunately, Python has two built-in commands that can perform these conversions. These

are called int and float respectively.

Built-in Function Description

int(s)
Converts the string ‘s’ to an integer. The result is a new number
object

float(s)
Converts the string ‘s’ to a floating point (decimal) number. The
result is a new floating point object

The two commands int and float are important because they allow Python to use values

entered by the end-user in arithmetic expressions.

Python Programming Page 35

Example – Year of Birth

We want to write a program to calculate a person’s year of birth.

Our program will ask the end-user for two pieces of information - the current year and the

age they will be at the end of the current year.

We will store this data in two variables – year and age.

Since year and age are both numeric we will need to instruct the program to convert them

from strings to integers. This can be done with the int command.

The solution is as follows.

Lines 1 and 2 both display a prompt asking the user to enter values and then convert these

values from strings to integers. The conversion from string to integer is needed here

because Python knows how to subtract numbers but cannot subtract strings.

Line 3 subtracts the two integers (to calculate the year of birth) and displays the result in an

output message.

Notice how both int and input are called on the same line. When commands are

combined together on the same line like this it is called function composition. Python

executes the innermost function first and then works back towards the leftmost function

which is executed last.

Python Programming Page 36

It is important to understand the subtle difference between the string “2018” and the numeric

value 2018. One difference is subtraction is supported for numbers but not for strings

KEY POINT: The operations that can be carried out on values are constrained by

the value’s underlying object type.

Syntax Check: Try running the following program:

You will see an error like this:

Since the values are not converted to integers Python stores them as strings. The

expression year-age on line 3 is an attempt to subtract two strings which is not allowed in

Python. Python does not support the subtraction operation on strings.

It is also worth noting that numbers can be converted to string objects using the str

function. As an experiment try running the following lines of code separately:

This causes the following error to be displayed
TypeError: must be str, not int

This causes the string “200018” to be displayed.

KEY POINT: The ‘+’ operator for strings means concatenation.

Python Programming Page 37

Example – Temperature Conversion

Let’s look at another example of a program that accepts an input, performs some processing

and displays an output. The program below converts Centigrade to Fahrenheit. The formula

used is,

𝑓 =
9

5
× 𝑐 + 32

The input is the Centigrade value entered by the end-user; the processing is the conversion

(done by applying the formula); and the output is the Fahrenheit value displayed

The use of the float command on line 2 above means that the user can enter decimal

values for Centigrade. (Integer values are also permitted.)

Notice how both float and input are combined together on the same line.

Use the space provided to write down what you think would

happen if the float command was removed from the above

function. Why do you think int was not used?

Python Programming Page 38

A note on Testing

The purpose of testing is to verify that the program does what it is meant to.

It is normal practice for programmers to devise a number of test cases as part of the

program design process. Each test case is made up of an input and an expected output.

When the test case is run the actual output should be recorded. If there is a difference

between the expected and actual output, then the program contains an error (or bug) which

will need to be fixed.

The table below provides a good basis for testing the Centigrade to Fahrenheit program

shown on the previous page. Each row in the table is a separate test case.

Sample

Input (℃)

Expected

Output (℉)

Actual

Output

0 32.0

32 89.6

1000 1832.0

-10 14.0

-40 -40.0

-1000 -1768.0

Note that the values in the sample input

column are arbitrarily chosen. The expected

output values are calculated by using a

calculator or come from some other source

e.g. world wide web. The values in the

actual output column should be recorded by

running the program.

When the program passes all test cases it is said to be unit tested.

A good unit test will ensure that every line of code is triggered. It will also take ‘abnormal’

scenarios into consideration

Python Programming Page 39

Reflection

Examine the program below in terms of input(s), processing and output(s).

Use the space below to record your reflection.

Questions to consider might include:

1. What are the inputs? What processing is done? What is the output?

2. What would happen if all or any of lines 3, 7 and 11 were removed from the program?

3. How could the code be made more terse?

Write an additional line of Python code to calculate the new principal.

Python Programming Page 40

More built-in functions

Let’s take another look at our temperature conversion program discussed earlier.

This time try an input value of 21℃. The program displays the output shown below – the

number of digits displayed after the decimal point is unnecessary and unwieldly.

21.0 degrees C equals 69.80000000000001 degrees F

The level of precision displayed can be controlled by the programmer by using the round

function. Line 4 tells Python to display the value of fahrenheit rounded to 1 decimal place.

A full description of the round function is given in the table below along with some other

useful build-in functions offered by Python.

Function Description Example(s)

round(x [,n])

Rounds the number x to

n fractional digits from

the decimal point. If n is

not provided it is taken to
be zero.

abs(x)
Returns the absolute
value of x

pow(x, y)
Calculates x to the power

of y. (Same as x**y)

Can you predict what output would be displayed by this line of code?

Python Programming Page 41

The Remainder Operator (%)

The remainder operator, % (aka modulus operator), like all of the other Python arithmetic

operators, is a binary operator i.e. it works on two numbers, referred to as operands.

The comments (in red) short Python program below describe how examples of the

remainder operator works.

It should be evident that the remainder operator works by dividing the second operand into

the first. Whatever is left over is the result of applying the remainder operator.

The word mod (short for modulus) is often used to phrase questions or answers involving the

remainder operator. For example, what is 30 mod 10, or 9 mod 5 is equal to 1. Furthermore,

 𝑎 𝑚𝑜𝑑 𝑎 𝑖𝑠 𝑧𝑒𝑟𝑜 because any number divided by itself leaves no remainder

 𝑎 𝑚𝑜𝑑 1 𝑖𝑠 𝑧𝑒𝑟𝑜 because 1 divides every number evenly

 𝑎 𝑚𝑜𝑑 0 𝑖𝑠 𝑢𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑 because division by zero is not defined. In Python any attempt to

divide by zero will always result in a runtime error.

Computer Science contains a rich set of problems whose solutions involve using the

remainder operator. The application of the remainder operator to solve problems is referred

to as modular arithmetic and because modular arithmetic is particularly useful for

calculations involving time, it is also referred to as clock arithmetic.

For example, let’s say wanted to find out what day of the week it will be in 1000 days’ time.

We know every week has 7 days, and can calculate 1000 mod 7 to be 6. Therefore, the day

of the week in 1000 days will be the same as day as it will be 6 days from now.

Python Programming Page 42

The same general principal can be applied to working solutions to problems involving other

units of time such as seconds, minutes, hours, months, years, leap years, Easter etc.

Let’s take another example. You are about to embark on a space journey lasting 850,000

hours! Take off time is exactly 21:00. What time will it be when you reach your destination?

arrivalTime = (21 + 850000) % 24

print("You will arrive at", arrivalTime)

Modular arithmetic is also useful in situations where it is required to group ‘things’ (e.g.

people) into a fixed number of arbitrary sized groups. For example, if we had a group of 20

students in a class and we wanted to create four arbitrary sized groups, we could ask each

student to pick a random number – let’s call it N. Then N mod 4 will guarantee a group

number for that student because it will always be 0, 1, 2 or 3.

Another useful application is simply to find the properties of numbers. For example, mod 2 is

frequently used in computer programs to test whether a number is even or not (evenness

test).

Perhaps, some of the most common applications of modular arithmetic can be found in the

area of coding systems, ciphers and cryptography. Ubiquitous examples exist in the use of

modular arithmetic to perform validity checks on barcodes, ISBN numbers and credit card

numbers (e.g. Luhn’s algorithm) to name just a few. For example, a 13-digit barcode is valid

only the following expression is evenly divisible by 10.

(𝑑1 + 𝑑3 + ⋯ + 𝑑13) + 3 × (𝑑2 + 𝑑4 + ⋯ + 𝑑12)

where, 𝑑1 is the leftmost and 𝑑13 the rightmost barcode digit. If the expression mod 10 is

not equal to zero, the barcode is invalid and the scanned item will be rejected.

Python Programming Page 43

Programming Exercises

1. Write a program to calculate and display the total from the bill below.

5 x mars bars @ €1 each

4 x cans of coke @ €1.50 each

3 x bags of crisps @ 80 cents each

2 x cups of tea @ €2 euro each

1 x slice pan @ €3.50 each

Hint: Just re-arrange the lines of code shown here.

2. Re-arrange the jumbled up lines shown below so that the program displays the sum of

two integers entered by the end-user.

Warning! There are three extra lines that you won’t need.

3. Given the following formula to convert Fahrenheit (𝑓) to Centigrade (𝑐) write a program to

prompt a user to read in ℉ and display its ℃ equivalent correct to 2 decimal places.

𝑐 = (𝑓 − 32) ×
5

9

Python Programming Page 44

4. Write a program to find the day of the week for any date using Zeller’s Algorithm.

In Zeller’s algorithm the year is assumed to begin in March.

Months are numbered as: 3 for March, 4 for April, … 13 for January and 14 for February.

January 1997 is treated as month 13 of 1996.

The formula is as follows:

𝑤 = (𝑑𝑑 + ⌊
13(𝑚𝑚 + 1)

5
⌋ + 𝑦 + ⌊

𝑦

4
⌋ + ⌊

𝑐

4
⌋ − 2𝑐) 𝑚𝑜𝑑 7

where,

w is the calculated weekday. (𝑆𝑎𝑡 = 0, 𝑆𝑢𝑛 = 1, 𝑀𝑜𝑛 = 2, … 𝐹𝑟𝑖 = 6)

dd is the day of the month (e.g. for 25/12/1989, dd is 25)

mm is the shifted month, 𝑀𝑎𝑟 = 3, 𝐴𝑝𝑟 = 4, … , 𝐽𝑎𝑛 = 13, 𝐹𝑒𝑏 = 14.

(e.g. for 25/12/1989 mm is 12)

y is the last 2 digits of the year - remember the year is minus 1 for January or February

and the actual year for any other month. (e.g. for 25/12/1989 y is 89)

c is the first 2 digits of the year (e.g. for 25/12/1989 y is 19)

Hint: You need to decide what inputs you need from the end-user and what inputs to the

formulae you can derive from these user inputs.

Test your program using the following data:

Date
Expected

Output

Actual

Output

25/12/1989 2

01/01/2000 0

22/11/1963 6

Your Birthday! ?

Python Programming Page 45

Running Totals

Running totals are needed so often in programs that it is well worth putting some effort into

understanding the pattern used to create them.

A running total is a value that usually starts at zero and increases by successive additions

until a final total is reached. A very common example is a shopping basket total calculated at

a checkout.

Let’s say we have three items in our basket and they are valued at €10, €14 and €6

respectively. With very little effort, most people understand that the total bill is €30. However,

what most people probably don’t realise is that they have (subconsciously) run a running

total program similar to that shown below in their own heads.

Novice programmers may find the following tips for dealing with running totals useful:

1. Recognise the need for a running total (this is probably the most difficult step)

2. Initialise your running total variable to zero (line 4 above)

3. Every time you need to add a value to the running total use an assignment (lines 8, 10

and 12 above). Notice the only difference between these lines is the name of the variable

being added to runningTotal.

KEY POINT: The hallmark of the running total pattern is the runningTotal

variable appears on both sides of the assignment statement. In this way it is used to

update itself.

Python Programming Page 46

Can you re-order the lines in the previous listing without

breaking the code?

What one question do you still have in relation to running totals?

Python Programming Page 47

Introducing Random Numbers

Random numbers provide a rich way of generating numeric data in early stage

programming. A more advanced application of random number generation is in games

programming.

The following two programs demonstrate random number generation.

The first multiplies two randomly generated numbers and displays the result; the second

computes the mean of five randomly generated numbers.

Study both programs carefully and answer the questions on the next page in relation to the

second program listing.

Python Programming Page 48

Explain the purpose of the variables low and high.

Why do you think the variable low is used on line 5?

Explain why the brackets are necessary on line 15

Can you recognise how the running total pattern could be

used in this program?

Python Programming Page 49

Additional Notes

1. Variables and Memory

When a variable is assigned a value for the very first time it is said to be initialised. We say a

variable is initialised to a value. Memory for the variable is allocated at runtime when the

variable is initialised.

Internally, Python maintains a system table with one entry per variable. The values are

represented in memory as objects and a reference links the variable to the object.

KEY POINT: In Python variables are actually references to objects.

The diagrams below illustrate what happens when we initialise the variable x to 5 and then

assign a new value to it.

Memory representation following the

statement x = 5

Conceptual, memory representation

following the statement x = x+1

Conceptually, the value of a variable changes. The old value seems to be replaced with a

new value. Technically, what happens is illustrated as follows:

The old value remains on in memory, and the variable that referenced it before the

assignment now references the new value.

Python Programming Page 50

It is for this reason that objects such as strings and numbers are said to be immutable.

Finally, note that the original number object i.e. 5 in this case is left without a reference.

Unreferenced values are referred to as dangling objects. Such objects are automatically

returned by Python, to memory, in a process known as garbage collection.)

2. Python Assignment Operators

In addition to the simple assignment operator introduced and used throughout this section,

Python supports a variety of other more compact assignment operators.

These are given here for the sake of completeness. (Assume x=7 and y=3)

Unlike C++, Java and some other programming languages, Python does not provide built-in

support for the unary increment and decrement operators (e.g. − − x and y + +).

Python Programming Page 51

BREAKOUT ACTIVITIES

BREAKOUT 2.1: Turtle Graphics

Variables, assignments and operations can be used to dynamically vary the dimensions of

turtle shapes.

1. Predict what pattern would be generated by the each of the following program listings.

Program Listing 1 Program Listing 2

Explain the main difference between the two programs

shown above

Python Programming Page 52

2. Match the code block below with the correct shape (drawn to scale).

Python Programming Page 53

3. Modify the program below so that the angle size is increased by 135° before each turn.

The modified program should display the pattern illustrated to the right

4. Implement the following pseudo-code in Python to display the pattern illustrated

Initialise a variable called angle to 30

Move forward by 50 units

Turn left by angle degrees

Increase the angle by 10°

Move forward by 50 units

Turn right by angle degrees

Increase the angle by 10°

Move forward by 50 units

Turn left by angle degrees

Increase the angle by 10°

Move forward by 50 units

5. Write a Python program to display five lines of random length. Each line should be joined

to the next at a randomly sized angle.

Python Programming Page 54

BREAKOUT 2.2: Automated Teller Machine (ATM) Menu System

Recall from Section 1 the menu system for our fictional LCCS bank.

Use the knowledge you have gained so far to convert the pseudo-code shown to the right of

the menu below into Python.

Display a welcome message

Initialise a variable called balance to 123.45

Display the value of balance

Prompt the user to enter an amount to lodge

Increase the balance by the amount entered

Display the value of balance

Prompt the user to enter an amount to withdraw

Decrease the balance by the amount entered

Display the value of balance

Hint: You will need to consider what variables you will need as well as their datatype.

Log your thoughts.

What did you find most/least challenging about this task?

Python Programming Page 55

BREAKOUT 2.3: Data Processing (average height)

The short program shown below was designed to calculate the mean height from five values

entered by an end-user. Study the program carefully until you are satisfied you understand

how it works.

The test data shown below threw up some differences between expected and actual outputs.

Although the program is syntactically correct it contains at least one semantic error (bug).

Input Values (cm)
Expected Output Actual Output

h1 h2 h3 h4 h5

150 160 170 180 190 170.0 cm 694.0 cm

190 172 172 178 187 179.8 cm 746.4 cm

171 175 169 182 178 175.0 cm 730.8 cm

Log your thoughts.

What is your opinion of the above program?

In what way(s) could the program be enhanced?

Python Programming Page 56

Suggested Activities

1. Key in the full program and make sure it runs without any syntax errors.

2. Experiment by rearranging lines 6-10 into different orders. Each time you make a

change, run your program to see if they make any difference to the output display.

3. Fix the bug(s)

4. Modify the code so that it can accept decimal values for height as well as whole

numbers. (Make sure to round your result.)

5. Implement some of your suggestions from the bottom of the previous page

6. Rearrange the lines below into a program that does the same thing.

Note, only five of the lines (excluding comments) are needed but two of these will be

needed more than once.

7. Add a line of code to display the result in feet and inches as well as centimetres.

(1𝑐𝑚 = 0.393701 𝑖𝑛𝑐ℎ𝑒𝑠)

Python Programming Page 57

Further Activities

By this stage you are more than likely getting tired of having to enter 5 different values for

height every time you run your program.

Wouldn’t it be nice if you could enter the values into a

spreadsheet and every time you run your program it

would read the file and calculate the mean based on

the 5 values contained in the file?

This is exactly what the following program does.

Before reading the detailed explanation of the program on the next page see if you can fill in

the blanks (and complete the comments)

The file heights.csv was created in a spreadsheet and saved into the same folder as the

Python source program. This is called the runtime folder.

Each of the five lines in the data file contain a numeric value that represents a person’s

height in centimetres.

Python Programming Page 58

Program Explanation

 Line 4 of the program opens a data file called heights.csv in read mode. This tells

Python that the file will be used for reading (as opposed to writing) purposes. The

variable heightFile is the program’s reference to this file. This is called the file pointer

(also referred to as a file handle). Any operations on the file such as reading the file must

use this file handle.

It is useful to think of a file pointer as an imaginary index finger. When a data file is

initially opened in read mode the pointer is positioned at the start of that file.

 Line 6 initialises a variable called totalHeight to zero. This variable will be used to

store the sum of all the height values.

 Line 8 tells Python to read a line from the data file, convert the result to a floating point

number and store the resulting value in a variable called height. (There’s lots going on

here so make sure you understand this line as it is a very common type of pattern in

Python programming.)

Every time the program reads a line from the file, the file pointer is moved to the start of

the next line in the data file. This is a subtle side effect of the readline command.

 Line 9 adds the current value of height to the value stored in the variable

totalHeight (which was initialised to zero on line 6). In this case, the answer will be

the same as the value in height. This answer is then stored in totalHeight.

 This pattern of reading the next line from the data file and adding the height value to the

running total is repeated four times i.e. once for each line in the data file.

 Line 24 computes the average and lines 27 and 28 display the result.

What one question would I still like to ask in relation to this

example?

Python Programming Page 59

BREAKOUT 2.4: Games Programming with pygame (Animation)

In this activity we will use our knowledge of variables to create the illusion of a 50x50 unit

square block moving from a starting position on the top left hand corner of a window towards

(and beyond) the bottom right hand corner of the same window.

Before writing any code it is good practice to first design a solution. Start by analysing the

problem – make sure you understand what is required. It is always helpful to try to visualise

what the final running program will look like.

The three screenshots below depict a red block moving diagonally (downwards and to the

right) towards the bottom right corner.

Before writing any code it is often helpful to ask probing questions such as ….

Have I done something similar before? Can the task be decomposed (broken down)?

What Python commands are there to meet my need? How do these command work?

Do I need variables?

Can I find a solution for a similar problem using the internet? What would I be looking for?

Python Programming Page 60

In this case we will decompose the problem into 2 parts:

a) Display a 50x50 block in the top left hand corner of a pygame window

b) Create the required illusion of movement from top left towards bottom right

The solution to part a) along with the output window is presented in the program listing

below. (You should key in the program and make sure it runs without any syntax errors.)

Program Listing Output Window

Program Explanation

 It should be possible to understand most of the code from the activity at the end of

section 1 (if not you should revisit section 1)

 Line 16 is the key line – this line uses the command pygame.draw.rect to draw the

50x50 rectangle (i.e. a square) at position (0,0) in the display window. The ‘clever’ bit is

recognising that by using (0, 0) as the co-ordinates the block will be positioned at the top

left of the display window as required.

 Line 18 updates the display causing the red square to actually appear in the display

window.

Python Programming Page 61

The solution to part b) of the problem - presented below - is slightly more intricate and

requires a little more in depth knowledge of the ‘game loop’.

The ‘trick’ here is to create the illusion movement by displaying the block it in a rapid

sequence of different positions. The co-ordinates of the block will be needed.

We introduce two variables x and y to store the co-ordinates of the top left corner of the

block. The variables are initialised to 0 on lines 14 and 15 respectively.

Our illusion is achieved by changing the value of each variable inside the game loop (lines

28 and 29) before redrawing the block and updating the display.

Line 28 increases the x position by 5 – this causes the horizontal movement.

Line 29 increases the y position by 5 – this causes the vertical movement.

Python Programming Page 62

Experiment! Try making the following changes.

1. Comment out line 33. What happens? What is the purpose of this line of code?

2. Change the fill colour on line 33 from BLACK to RED. Explain what happens.

3. Comment out line 28. What happens? Can you explain why?

4. Change the offset amount from 5 to 10 on line 29. Explain any changes in the way the
program behaves.

Further Activities

1. Adapt your program so that the block moves as follows:

- from the top left corner to the bottom left corner

- from the top left corner to the top right corner

- from a different starting position in one dimension e.g. top right to bottom right

- from a different starting position in two dimensions e.g. bottom left to top right

- from a random starting position to a random ending position

2. Write a program to make a ball (circle) appear to move through the screen.

Python Programming Page 63

Section 3

Strings

Python Programming Page 64

Introduction

In Section 1 we defined a string as any text enclosed inside quotation marks. Strings are

important simply because, along with numbers, they are by far the most common type of

data processed by computer programs and systems.

The value of a string can either be a string literal or any Python expression that results in a

string. Some examples of simple string literals are listed below.

"Please enter your name: ”

"John Doe”

 “+353-85-1234567”

“182 C 999”

“@PDSTcs Python CPD for #LCCS teachers”

“http://www.youtube.com/watch?v=hUkjib”

The individual symbols that make up a string are called characters.

Notice from the above examples that characters can be letters, numbers, spaces,

punctuation marks and basically any symbol your keyboard will allow you to enter.

KEY POINT: A string is a sequence of characters enclosed by quotation marks.

Sometimes a string is referred to as an array (or list) of characters.

It is useful to think of the individual characters of a string being stored in consecutive

locations of the computer’s memory. For example, string Hello World could be thought of as

follows:

Internally, computers store unique numeric codes for each character and not the actual

characters themselves.

Python Programming Page 65

When to use a string

It is relatively straightforward to understand what a string is. However, a more necessary skill

lies in the ability to recognise the need to use strings (in computer programs).

The art of computer programming usually involves the representation of some real world

phenomena by using a programming language such as Python. In other words,

programmers use the features of Python to model real world phenomena.

The number of real world situations that can be modelled using computer systems is

endless. Examples include buying, selling, order delivery, flight scheduling, medical systems,

processing of examination results, news, entertainment and even socialising.

At an even finer level of detail, the string datatype is a feature of Python that is suitable for

representing many real world things.

KEY POINT: A string should be used in a computer program to model any real

world data that could be composed of any combination of letters, numbers and

punctuation symbols.

Examples of string data include names, addresses, phone numbers, passwords, email texts,

Facebook posts, SMS text messages, tweets, product codes, descriptions – the list is

endless. In fact, most of the data you see on your mobile phone and on the world wide web

are represented by strings.

Novice programmers should be made aware of the fact that data which intuitively looks

numeric are frequently represented in programs by strings. The reason for this is that these

apparent numbers can often contain non-numeric data such as brackets, dashes or letters.

Common examples include phone ‘numbers’, vehicle registration ‘numbers’ and Personal

Public Service Numbers (PPSN).

Python Programming Page 66

String Operations

We already know we can display a string using the print command. But what are the other

operations that can be carried out on strings?

By far the most important strings operations are indexing and slicing. Indexing is a

programming technique used to access individual characters of a string. Slicing is a variation

on this used to access multiple continuous characters from a string (known as a sub-string or

a slice).

Other operations that can be carried out on strings are addition, multiplication, formatting

and comparisons. Strings also support set operations such as in and not in. These set

operations along with comparisons will be discussed in the section on programming logic.

Python also comes with a number of built in commands that can be used on strings as well

as a comprehensive set of commands (known as string methods) specifically designed for

working with strings.

String Indexing

In order to understand string indexing (and slicing) it first necessary to understand the

concept of an index. Consider the string s initialised in the line of code shown

Internally, the computer represents the string s as a sequence of characters stored at

contiguous memory locations. Each individual character is stored in its own separate

memory location.

The individual characters in every Python string have a position. This position is relative to

the first character in the string and is known as an index. Because the index is an offset from

the first character, the index of the first character itself, in every Python, string is zero.

Indices are said to be zero-based.

Python Programming Page 67

The diagram below depicts the index position of every character in the string s.

As can be seen the first character i.e. ‘H’ has an index of zero. This is important. The first

character in a string always occurs at index position zero (this is often called the zeroth

position), the second character at index position 1, the third character at index position 2 and

so on. The string Hello World contains 11 characters and each character has a unique index

ranging from 0 to 10.

In general, when there are 𝑛 characters in a string the last character always occurs at index

position 𝑛 − 1. Therefore, if there are 5 characters in a string the last character occurs at

index position 4.

Each individual character of a string can be accessed by enclosing the character’s index

inside square brackets The square brackets must appear directly after the name of the

string. For example, the first element of the above string can be accessed using s[0]. So,

s[0]  "H"

s[1]  "e"

s[2]  "l"

s[3]  "l"

s[4]  "o"

s[5]  " "

s[6]  "W"

s[7]  "o"

s[8]  "r"

s[9]  "l"

s[10]  "d"

It is worth pointing out that Python, unlike many other programming languages does not

support the concept of a character datatype. All of the single characters returned in the

above example are actually strings i.e. single character strings of length 1.

Python Programming Page 68

Negative Indices

Python permits the use of negative numbers as indices.

The diagram to the right depicts the positive and

negative indices of the string Hello.

As can be seen the last (rightmost) character of the

string can be accessed using index −1. Working from

right to left the index of each character is one less than

its predecessor.

Experiment!

A pangram is a sentence that uses every letter of the alphabet at least once.

Study the program below and see if you can predict what it does? Record your

prediction on the right hand side.

Key in the program and make some changes? What happens?

Prediction

What one question would I still like to ask in relation to this

example?

Python Programming Page 69

Common Pitfalls

It is worth pointing out a couple of very common pitfalls relating to strings and index numbers

The first thing to note is that strings are immutable. This means that once a string has been

initialised it cannot be changed. For this reason, it is not permitted to use the index operator

([]) on the left hand side of an assignment statement.

For example, the string Cavan could not be changed to Navan as follows.

This code results in a syntax error shown below:

To ‘change’ the value of town to Navan the program needs to make a new assignment

town="Navan" but be warned that the reference to the original string Cavan is now lost.

Secondly, if a program attempted to access a character in a string using an index that is too

big (i.e. beyond the last character) for that string, Python returns a runtime error telling you

that the index is out of range. For example, running the following code snippet would result

in a runtime error being displayed because the index 5 is beyond the range of the string.

Out of range errors (aka out of bounds errors) can be a source of great frustration even for

more experienced programmers.

Python Programming Page 70

String Slicing

Thus far we have used indexing to access individual characters from a string. The technique

of indexing can also be used to extract a sub-string from a string. This is known as slicing.

The part of the string that is extracted is known as the slice (i.e. sub-string).

Slicing is useful when we want to extract a specific piece of information out of a longer piece

of information. For example, we may want to extract a share price from a web page

displaying stocks.

In order to extract a slice from a string we need to know the indices of the desired slice’s

start and end positions. The slice is taken by specifying these values inside the square

brackets. The values are separated by a full colon.

The technique of slicing is demonstrated by the following short program.

The colon delimits the start and end positions of the slice we are interested in extracting. The

resulting slice runs from the starting index up to, but not including the end. If the start is

missing it is taken to be zero i.e. the first character of the string. If end is missing it is taken

as the index of the last character in the string.

What do you think the statement print(pangram[:]) would

display?

Python Programming Page 71

String Addition and Multiplication

Strings, just like numbers can be added and multiplied.

The operation of adding one string to another is commonly referred to as string

concatenation. We say one string is concatenated to another string to form a new (and

longer) string. The plus operator, ‘+’ is used to concatenate two strings.

The programs below illustrate how the plus operator is used to concatenate strings.

PROGRAM 1

PROGRAM 2

PROGRAM 3

Log your thoughts.

Each of the above programs contain a deliberate subtle error.

Can you suggest any improvements?

Python Programming Page 72

String construction

String concatenation is a useful technique for building up a string made up of separate

strings that come from different sources. Let’s say we wanted to construct an output string

based on the pangram string we used earlier.

This time however we want to ask the user to enter the colour of the fox and the name of the

animal to jump over. The output string will be constructed based on the values entered by

the user. Example outputs could be:

One solution is as shown here.

Observe how the outStr is built up bit

by bit as the program progresses.

Can you see any similarities between

this and the technique for keeping

running totals described earlier?

String multiplication

Multiplication of strings in Python is not very common. When a string is multiplied by some

integer 𝑛, a new string is produced. This new string is the original string repeated 𝑛 times.

The technique of string multiplication in exemplified by the program shown below. The output

generated is displayed to the right.

HelloHelloHello

eee

elelel

Python Programming Page 73

The string variable alNum is initialised as shown here.

Match each index operation on alNum to the correct value in the middle

Explain what is wrong with each of the following code snippets

Python Programming Page 74

Strings Formatting

Sometimes it is useful to be able to display a string that is made up of several pieces of data

without having to use the string construction techniques just described.

Formatting string expressions enable us to display more than one piece of data in a single

print statement. Consider the following statement:

The first string after the opening brackets on each line is called the format string. This is the

string that Python displays once it has it formatted. In this example the format string is Hello

%s

The %s is a placeholder for Python to insert a string value into the format string. %s is an

example of a Python formatting type code (aka format specifier).

The % immediately after the format string tells Python that what follows is a string formatting

expression. This expression contains the actual value(s) for Python to substitute into the

format string.

In the above statement, Python replaces %s the string literal, World, and the resulting

formatted string Hello World is displayed.

Some common string formatting codes are listed below

 %s is used to format text (strings)

 %d is used to format integers

 %f is used to format floating point (decimal) numbers

 %.2f is used to format floating point numbers to 2 decimal places (rounded)

KEY POINT: The print command replaces each format code, in strict

sequence, with a value of the appropriate datatype from the formatting

expression.

If the format string contains more than one code, then the corresponding values

in the expression must be separated by commas and enclosed by brackets.

Python Programming Page 75

The four statements below each generate the same output.

What output is displayed?

The output generated by the following code is displayed to the right.

Experiment!

See if you can figure out what the following code does.

Finally, it is worth noting that string formatting expressions can, and frequently do, contain

variables and/or other Python expressions. This is exemplified in these two snippets.

Python Programming Page 76

Built in string commands

So, let’s say we have a string s declared and initialised as follows:

Command Description Output

len(s)
Returns the length of the string, s

This is the number of characters in the string.
44

min(s) Returns the minimum item in s. See below. " "

max(s) Returns the maximum item in s. See below. "z"

Another built in command that relates to strings is str. The str command is used to

convert any object into string. This means a program can dynamically change the type of

any object to a string type.

One practical use of str is to convert numbers to strings when we want to display them as

part of an output message. Observe the way the output string is displayed by the following

program.

KEY POINT: Python is dynamically typed. This means that when a program is

running, numeric data can be converted to strings and vice versa.

Python Programming Page 77

Coding Systems (ord and chr)

Two other built in Python commands that relate to strings are ord and chr

Programmers should be aware that all data is represented internally by computers using a

coding system. A coding system is one which uses combinations of binary digits to represent

data values uniquely. ASCII (American Standard Code for Information Interchange) and

Unicode are the names of two very widely used coding systems. An illustration of the full

ASCII character set is shown below.

The two built-in functions – ord and chr - are used to convert back and forth between

characters and ASCII.

ord(c) Returns the ASCII representation (or Unicode code point) of the character c.

chr(i)
This is the inverse of ord. The function returns a single character as a string

whose ASCII representation (or Unicode code point) is the integer i

Python Programming Page 78

The programs below illustrate the use of ord.

Line 1 outputs 65. This is the ASCII

representation for the character ‘A’

Line 2 outputs 90, the ASCII

representation for the character ‘Z’ (25

letters from ‘A’

Use the ASCII table shown on the previous page to predict

the outputs of lines 3, 4 and 5 of the above program.

The programs below illustrate the use of chr.

Line 1 outputs character ‘A’

Line 2 outputs character ‘Z’

Line 3 outputs character ‘a’

Line 4 outputs character ‘1’

Experiment!

Try the following programs and see if you can explain what is

going on.

Python Programming Page 79

Programming Exercise

A Caesar cipher is a way of encoding strings by shifting each letter by a fixed number of

positions (called a key) in the alphabet. For example, if the key value is 1, the string ’LCCS’.

would be encoded as ‘MDDT’. Each letter of LCCS is moved on by one.

The short program below prompts a user to enter a single character and then it calculated

and displays the character with the next ordinal number e.g. if the user enters A the program

will display B.

Type in the program and test it. Once you understand what the program does change it so

that it "encodes" a 6 letter string using a key value of 1 e.g. "Python" becomes "Qzuipo".

In order to complete this task, you will need to understand:

 Variables and assignments

 Strings (indexing and concatenation)

 Data representation (ASCII/Unicode)

 How to use the ord, chr and print built-in functions

Log your thoughts.

Suggest ways by which this task could be altered to make it either

more challenging or less challenging for a LCCS student to complete?

Python Programming Page 80

String Methods

String methods are special commands that can be used to manipulate and perform

common/useful operations on strings.

The official Python documentation https://docs.python.org/3/library/stdtypes.html#string-

methods lists and describes over 40 built in string methods. The program below

demonstrates five of these – capitalize, upper, isupper, islower and find.

When the above program is run it generates the following output.

Each of the nine lines of output correspond, in sequence, to the result of the string methods

used inside each of the nine print statements.

The program, along with the output it generates should be studied carefully again after

reading the method descriptions on the next page.

https://docs.python.org/3/library/stdtypes.html#string-methods
https://docs.python.org/3/library/stdtypes.html#string-methods

Python Programming Page 81

As can be seen, the string methods operate using the same dot notation as we used for

turtle and pygame objects earlier. For any string variable s, we can use a string method

by typing s, followed by a dot, followed by the method’s name. This is denoted as follows:

<string-variable-name>.<method-name>

Method Name Description

s.capitalize() Returns a new string with the first letter of s in capital letters

s.upper() Returns a new string with all the letters of s in upper case

s.isupper()

Returns the value True if all the letters in s are in upper case. If

all the letters are not in upper case the method returns False.

True and False are both Python keywords will be explained in

the next section on programming logic.

s.islower()

Returns the value True if all the letters in s are in lower case. If

all the letters are not in lower case the method returns False.

True and False are both Python keywords will be explained in

the next section on programming logic.

s.count(“o”)
This methods counts the number of times any string e.g. o

occurs in the string s and returns the answer.

s.find(“Fox”)

This method looks for a string e.g. Fox in the string s and if it

finds it returns the index position of the F. If the search sting is

not found the method returns -1.

s.replace(t, u)

Replaces all occurrences of t in s with u.

s, t and u are all strings.

s remains unchanged if it does not contain t.

Python Programming Page 82

The code below initialises four string variables

Match each Python statement to the correct value shown on the right

Python Programming Page 83

Additional Notes (Sequences)

Strings like almost everything else in Python are examples of objects. The string type is a

core data type that is built into the language. Some other examples of built in types include

numbers, lists, tuples dictionaries and files. The official documentation on all Python’s types

can be viewed online at https://docs.python.org/3/library/stdtypes.html and is well worth a

visit.

More specifically Python classifies strings as part of a more fundamental kind of object

known as a sequence. A sequence is defined as a ordered collection of objects

Python supports three basic sequence types (list, tuple and range), a text sequence

type (str) and a number of binary sequence types use to work with binary data.

All sequence types share a common set of operations, called sequence operations. The

table below, which is taken directly from the official Python documentation, lists these

common sequence operations in ascending order of precedence.

Note that concatenation, multiplication, indexing, and slicing – all described in this section in

the context of strings – are all common sequence operations and, therefore, are equally

applicable to all the other sequence types.

https://docs.python.org/3/library/stdtypes.html

Python Programming Page 84

Sequences can either be mutable, meaning that their values can be changed once they

have been created, or immutable, meaning that their values cannot be changed after

creation.

Python considers strings to be as ‘elemental’ as numbers and accordingly implements them

as immutable sequences. Therefore, once a variable has been initialised with a string value

that value can never be overwritten. A program may appear to change a string by assigning

the same variable to a new or different string.

Sequences are also distinguished from one another by their own specific set of operations

that are not available to other types. For example, the string methods described earlier in

this section are specific to string sequences and cannot be used on other sequence types.

Finally, it is worth noting that unlike many other high level programming languages, Python

does not provide any built-in support for the character datatype. In Python, a single character

is simply a string of length one.

KEY POINT: Strings are sequences of one character strings.

Python Programming Page 85

BREAKOUT ACTIVITIES

BREAKOUT 3.1: School Survey Web Page

Among the many applications of Python strings are file processing and HTML files

generation. Consider the following scenario.

Your school loves to hear feedback from teachers and students on a wide variety of topics

and issues – so much so, that the school website even has a dedicated page for hosting

weekly surveys. This week’s survey, shown below, relates to the menu in the school

canteen.

The format of the web page is the same for every survey. Surveys differ from each other

only in the actual question being asked, and the text of possible answers which always

appear in two buttons displayed side-by-side on the page. Participants are always asked to

enter their first name and last name.

The questions and answer options for the next three surveys approved by the school board

are shown below.

1. Destination for School Tour next year? Rome Barcelona

2. Exam year students should be allowed to take part in all

extra-curricular activities?
Agree Disagree

3. Computational Thinking should be taught as part of every

subject
Always Sometimes

Python Programming Page 86

The problem is that every week the school ‘techie’, Ms E. Fish, has to edit the HTML file with

next week’s survey question and answers, and upload it to the web server to make it live on

the school web site.

The ‘techie’, who is also the school’s Computer Science teacher understands HTML, but

with the new term fast approaching is very busy developing content for the learning

outcomes in the new LCCS specification as well as coming up with ideas for teaching the

course through the lens of the four Applied Learning Tasks.

Even though the HTML code behind the survey page – shown below - is fairly

straightforward, she needs come up with an efficient solution so that her colleague. Mr.

Chips (the maths teacher who does not possess any knowledge of HTML) can upload the

new survey.

survey.html

The solution Ms. E. Fish comes up with is as follows:

1. She will create a HTML survey template file with placeholders for the question and

answer text to be used in the survey. The name of this file will be

survey_template.html.

2. She will create a normal text file to store the question and answer text for the next

survey. The name of this file will be survey.txt.

Python Programming Page 87

3. She will write a Python program that generates a HTML for the next survey using two

files survey_template.html and survey.txt. The name of the generated file will

be survey.html.

All Mr. Chips will have to do every week is edit the text file and run the program. No need

to worry about HTML - easy!

Ms. E. Fish was delighted that her proof of concept worked and so commenced the job of

implementing her solution. She created the two files - survey_template.html and

survey.txt – as per design. These are shown below. Notice the three placeholders for the

text on lines 6, 14 and 15 in the survey_template.html

survey_template.html

survey.txt

Python Programming Page 88

However, soon after she started writing the Python program to generate the weekly survey,

Ms. E. Fish realised that she needed to prioritise lesson planning for the fast approaching

LCCS.

With the program, shown below, at unit test stage, unless someone steps in, the project is

looking like it might have to be shelved and the destination for next year’s school tour is still

undecided.

The desired output is shown below.

Python Programming Page 89

Suggested Activities

1. Restate the problem in your own words.

2. Complete the program by adding the necessary code inside the

red rectangles to get it displaying the desired output. You will

need to make sure the two files - survey_template.html and

survey.txt – are in the runtime directory.

3. Outline how you might test your system.

4. Describe in detail the steps you would have to take in order to

introduce a third answer button into the survey

Python Programming Page 90

BREAKOUT 3.2: RSS Feed Analysis

Really Simple Syndication (RSS, aka Rich Site Summary) is a technology that allows an

end-user to have information delivered automatically from selected website(s) to a device.

The information is referred to as a feed. User can subscribe to receive RSS feeds from

specific sites, and in this way, keep up-to-date with the information they are interested in.

Typically, these sites contain information relating to business, jobs, blogs, news,

entertainment etc. Once a user has subscribed, feeds containing any new information on

these sites are automatically ‘sent’ to that user who can then view them using a RSS reader

(typically a web browser).

Use your favourite browser to locate and record the names

and URLs of some RSS sites that interest you.

1.

2.

3.

4.

5.

In this session we will modify and write code that analyses data from a live RSS feed of your

choice.

A working program that connects to a URL and delivers a live RSS from that URL to a

variable called feed is provided as a starting point. The program listing is shown on the next

page.

Notice that a large section of the code in enclosed in a black box. The black box is used to

indicate code that is needed for the program to run, but not necessary to understand. In this

example, the code inside the black box tells Python to read a RSS feed from the URL

specified as a string on line number 24.

Python Programming Page 91

Program to read a RSS feed

The listing below pulls live headline news publically available from Apple’s RSS feed. The

data is stored in the string variable, feed.

Line 24 is an assignment statement. The right hand side tells Python to used code (inside

the black box) to read the contents of a RSS feed. The full URL of the site from which to

read the feed is hard-coded as a string in this line. The feed itself is returned as a string and

stored in the variable feed.

Line 26 displays the contents of the feed on the output console.

Line 28 displays the number of lines in feed. It does this by using the count command

(method) to count the number of newline characters in feed. (A standard technique used to

count the number of lines in a piece of text is to count the number of occurrences of the

newline character, ‘\n’.)

We are now ready to make changes to the code.

Python Programming Page 92

Suggested Activities

1. Key in the full program and make sure it runs properly.

2. The feed URL is hard-coded into the program (line 24). This means that a programmer

must change the code every time a different feed needs to be read.

Modify the program so that it reads the URL from the first line of a text/data file.

Hint #1: You will need to create a file first (e.g. feeds.txt), and save it in your runtime

directory. The file might look something like this:

Hint #2: A solution can be obtained by using four of following lines (in a different order).

3. Extend the code so that it displays the entire feed a) capitalised, b) in upper case and c)

in lower case.

4. Write a line of code that replaces every occurrence of a specific word in the feed with

another word of your choosing e.g. replace the word ‘Apple’ with the word ‘Microsoft’.

Display the new string.

5. Write a code snippet to count and add the number of vowels in the feed. (Later we will

use the plotly library to display these data on a bar chart.)

Python Programming Page 93

6. Add the following code snippet to the end of your program and run it.

What happened when you added the above code?

What do these two lines do?

Can you condense these two lines into one line that does the same

thing?

7. Write code to replace the first two occurrence of a specific word/phrase in the feed with

another word/phrase of your choosing. (You will need to identify some word/phrase that

occurs at least twice yourself.) The output should display the entire feed with the new

word/phrase in place of the original two.

Hint: You will need to use the techniques of indexing/slicing and concatenation to

construct the output string.

8. Same as previous activity except, instead of replacing the two words, your program

should apply the Caesar cipher algorithm implemented earlier in this Section.

9. Browse to the official Python site documentation on string methods (see link below) and

identify some method(s) that you have not already used. Now, use the feed from this

activity to test drive your new string method.

https://docs.python.org/3/library/stdtypes.html#text-sequence-type-str

https://docs.python.org/3/library/stdtypes.html#text-sequence-type-str

Python Programming Page 94

10. Read the listing below and predict what it will do.

Now key it in and run it. Was your prediction correct?

Experiment!

What happens if you change the URL on line 5?

Discuss in groups ways an activity (or sequence of activities)

might be developed around the above code. (You may find it

useful to reflect on the types of activities carried out in this

breakout session on RSS feeds.)

Python Programming Page 95

Section 4

Lists

Python Programming Page 96

Introduction

A list is a collection of variables. The list type is commonly referred to as an array in other

programming languages but as we shall see there are some subtle differences between lists

and traditional arrays.

Lists are useful because they provide us with a means of grouping several variables into a

single variable. The value of each variable is known as a list element and these can be

accessed by using the indexing/slicing techniques described in the previous section on

strings.

Just think about it. Thus far in this workshop, variables have been used to store single

values. This has been the case regardless of the variable’s datatype i.e. whether it is a string

or numeric, only one value at a time can be stored in it.

Strings are a special type of list where the individual elements are the individual characters

that make up the string. One key difference between lists and strings, however, is that lists

are mutable, whereas strings are not.

The main purpose of lists it to provide a mechanism for dealing with ‘a whole bunch of data’

using a single variable.

KEY POINT: A list is a Python programming construct useful for modelling any

real world data that can be grouped together under a common name.

Examples of lists include teacher names, schools, subjects, teams, lists of friends, a book

list, a list of tweets, play lists (songs), shopping lists, a list of instructions, lists of countries,

lists of capital cities, days of the week, months of the year, holiday dates, lists of numbers

(e.g. lottery, ages, salaries, sales figures, heights etc.). The list of lists is endless!

Consider for example, scenarios where we needed to keep track of the number of times a

particular event occurred. Let’s say there are multiple possible outcomes and we need to

maintain a count for each one individually. For some reason we might be asked to write a

traffic survey program that counts the numbers of pedestrians, bicycles, cars, vans, HGVs

etc. passing a particular point at a particular time of the day. Without lists we would need to

program separate variable for each count.

Python Programming Page 97

Creating Lists

The simplest kind of list is an empty list i.e. one that contains no elements. Empty lists are

created by using a pair of square brackets as illustrated in the code below.

The code shown here to the right creates five

different empty lists. The square brackets on the

right hand side of each assignment tell Python

that the datatype of the variable named on the left

hand side is a list.

Remember lists are mutable. Even though these

lists do not contain any data, their construction

means that the program can add data to them at

a later stage.

The following code snippet illustrates how to initialise lists with data.

Note the use of square brackets on the right hand side and the use of commas to separate

the individual list elements. The number of elements in the lists are 4, 4, 3, 5, 6 and 5

respectively.

Notice also that boysNames, girlsNames, favouriteSongs and fruits are all lists of

strings; vehicleCount is a list of numbers, and accountDetails is a list of different

datatypes.

KEY POINT: A Python list can be made up of elements having different

datatypes.

Python Programming Page 98

One of the key differences between lists and traditional arrays used in other programming

languages is that a Python lists can be made up of data having a mixture of different

datatypes, whereas the elements of an array must all be of the same data type.

It is useful to form a mental image of how lists are represented internally by the computer.

Lists are frequently depicted in either a horizontal or vertical fashion as shown here.

A horizontal memory representation for the list boysNames would look like this.

A vertical memory representation for the list fruits would look as follows.

The key point is that the elements of the list should be envisaged in contiguous memory

locations (just like the individual characters of a string as described in the previous section).

List five things you have learned about lists so far in this section.

1.

2.

3.

4.

5.

Python Programming Page 99

Common List Operations

Because lists and strings are both sequences, all of the common basic operations work in

the same way for lists as they do for string. Specifically, lists can be added to one another

(concatenation), multiplied together, indexed and sliced.

The commands min, max, and len also work for lists in the same way as they do for strings

returning the minimum value, the maximum value and the number of elements (i.e. the

length) in the list respectively.

Concatenation

Lists can also be constructed by concatenating two existing lists together. For example, we

could join boysNames and girlsNames together using the concatenation operator (+) to

form a new list called names as follows.

Notice that square brackets

are not used on line 3.

When a list is used without square brackets like this, Python takes it that every element in

the list is to be used.

The print command on line 4 displays the entire contents of the list. The output generated

by the above code is shown here.

The example below generates the exact same output, demonstrates that concatenation does

not always result in a new list being created.

The list, boysNames is

extended to include the list of

girls’ names.

Python Programming Page 100

Some Insights

The previous example provides us with an opportunity to gain some deeper insights into the

Python programming language.

Observe, that by the end of the example, the list variable boysNames will contain the names

of four girls (at least we think they are girls) – Sarah, Alex, Pat and Mary.

Just because we (humans) know that Mary and Sarah are definitely girls’ names, it does not

mean that Python knows this too. In fact, unlike humans, Python does not know the

difference between a girl’s name and a boy’s name. (This is because the language was not

designed to include any built in features to make such a distinction.). To Python, names are

all just strings.

The fact that the previous program instructs Python to assign the girls’ names to a variable

that looks like it was named by the programmer to store the boys’ names could mean one of

two things. Either

a) boysNames was a poor choice of a variable name made by the programmer or,

b) the assignment was a mistake, again, made by the programmer

In both cases the programmer is the person responsible.

KEY POINT: Python has no understanding of natural language syntax and

therefore has no way of inferring the intention of the programmer from the code.

Python Programming Page 101

List Indexing

Recall from the section on strings, that indexing is a technique used to access individual

elements of a list. List indexing works just like string indexing.

A list element is accessed by using an index which is a zero-based positional value for that

element. As was the case with strings, the index must be an integer (or an expression that

evaluates to an integer), and, must be enclosed inside square brackets.

The graphic below depicts how index numbers can be included as part of the ‘mental image’

we formed for lists earlier.

Every list element is uniquely referenced by the list name and an index number.

Example program (fruit machine v1)

One of the reasons that computer programming is sometimes referred to as an art is

because programmers can express creativity and imagination through the medium of their

code.

The next example program demonstrates how to combine the use of random numbers and

lists to simulate the operation of a fruit machine.

Python Programming Page 102

Read the program carefully and see if you can figure out how it works.

 Line 5 initialises a list of fruits.

 Lines 8, 9, and 10 each generate a random number between zero and four inclusive

 Lines 13, 14, and 15 each display an element from the list using the random numbers as

the index.

Look up the online documentation for the Python random library.

What does the choice command do?

How might choice be used in the above program?

One final point worth noting is that when a list element is accessed, the datatype of the

resulting object is the same as the datatype of the list element.

Python Programming Page 103

Changing the value of list elements

Lists are mutable objects. This means that the elements of a list can be changed (as well as

accessed). Recall that this is not possible with strings because they are immutable.

It is therefore ‘legal’ to apply the index operator to a list variable on the left hand side of an

assignment statement. The following short program demonstrates this.

 Line 1 initialises a list of fruits and line 2 displays the contents of the list

 Lines 4-9, each make separate changes to the individual elements in the list that are

‘housed’ at the given index

 Line 11 displays the list again

When it is run the program displays the output shown below. Can you figure it out?

Log any thoughts you have in relation to Python lists.

Python Programming Page 104

Index ‘Out of Range’ Errors

At runtime, Python always checks that index numbers lie within bounds for the object they

are being used to access.

A list index will be out of bounds if it lies beyond the range of the list. If Python attempts to

access a list element using an index that is out of bounds, it returns an out of range index

error and the program will crash i.e. stop functioning.

The whole idea of testing is to safeguard against system crashes happening in live

(production) code.

The above ‘program’ crashes on line 3, and lines 4 and 5 never get executed. Python

displays the following error screen.

Negative indices can be used on lists in just the same way as they could be used on strings.

The last element of a Python list has an index of −1. Working backwards, the index of each

element is one less than its predecessor. Therefore, the valid indices for a list made up of

four elements would be −4 to 3 inclusive. This is illustrated below.

KEY POINT: In general, the index numbers of any sequence of length of 𝑛 must

lie within the range of −𝑛 and 𝑛 − 1. So, −𝑛 ≤ 𝑖𝑛𝑑𝑒𝑥 ≤ 𝑛 − 1

Python Programming Page 105

List Slicing

Lists can be quite long and sometimes we might just be interested in processing a portion of

the data they contain. We can extract sub-lists from lists using the exact same technique that

we used to extract substrings from strings earlier i.e. slicing.

A slice is a list of consecutive elements taken from another (larger) list.

Slices are created using the square brackets index operator. As was the case with strings,

the colon delimits the start and end positions of the slice we are interested in extracting.

The technique of slicing is demonstrated in the program below.

Can you figure out how the program generates the output shown

inside the comments?

How could we ‘slice out’ the fruits that grow in Ireland?

KEY POINT: In general, the expression, aList[startPos:endPos]

creates a new list or slice from the list identified by aList.

 The resulting slice starts from index position startPos in aList

 The resulting slice runs up to index position endPos-1 in aList

 If startPos is missing it is taken to be zero

 If endPos is missing it is taken to be len(aList)-1

Python Programming Page 106

It is worth emphasising the point that a slice is in fact a new list.

For example, the following code results in the new list being stored in the list variable

exoticFruits

The contents of this new list are: ['orange', 'banana', 'kiwi']

Python Programming Page 107

Time to experiment!

Let’s say we have the following initialisation.

Predict the output that would be displayed by each of the print statements

in the program snippet below. Record your predictions in the left column.

Prediction Actual

Now key in the program and run it.

Record the actual output in the right column.

What value do you think the following expression would generate? Try it!

How does this answer shape your thinking in terms of the relationship

between strings and lists?

Python Programming Page 108

Can you find and suggest fixes for the two (not three) syntax

errors contained in the code below?

Syntax Error 1:

Syntax Error 2:

How does this extend your thinking in relation to range errors and slicing ?

Explain the steps you would need to take in order to extend the program’s

functionality to generate and display a random card? (e.g. Ace of Spaces)

What additional issues would you have to consider if the program was

required to deal a random hand of five cards?

Python Programming Page 109

List Methods

As data structures go, lists are very flexible. Apart from the basic common operations that

can be carried out on all sequences (e.g. concatenation, indexing, slicing), list objects also

support a variety of additional type-specific commands (methods).

The table below introduces some of these, but a more complete reference can be found by

browsing to the official Python page: https://docs.python.org/3/library/stdtypes.html#mutable-

sequence-types

Method Name Description

aList.append(item) Appends the item to the list named aList

aList.count(item)
Returns an integer count of how many times the

element item occurs in aList

aList.extend(anotherList)
Appends the list contained in anotherList to

aList

aList.index(item)
Returns the index of the first occurrence of item in

aList

aList.insert(index, item) Inserts item into aList at offset index

aList.pop() Removes and returns the last element from aList

aList.remove(item) Removes item from the list

aList.reverse() Reverses the order of all the items of aList

aList.sort()

Sorts objects of aList in place i.e. without creating a

new list. A new sorted list can be created using the

sorted built in command

The del keyword can also be applied to remove individual elements or entire slices from a

lists. del is used in conjunction with the square bracket index operator as follows.

del aList[i] Removes element at position i from aList

del aList[i:j]
Removes all elements from position i up to, but not including,

position j in aList. (Same as aList[i:j] = [])

del aList[:] Removes (clears) all the elements from aList

https://docs.python.org/3/library/stdtypes.html#mutable-sequence-types
https://docs.python.org/3/library/stdtypes.html#mutable-sequence-types

Python Programming Page 110

List Methods - Example 1

The following program demonstrates the use of several of these type-specific commands. The

generated output is shown as a comment at the end of each print statement. You should read

through the code and try to understand the list methods used.

Notice that the same dot notation as was described for string methods is also used for lists.

This means in order to use a list method, the programmer must type the name of the list

variable followed by a dot, followed by the method’s name, i.e.

<list-variable-name>.<method-name>

List Methods - Example 2

Try the following.

Python Programming Page 111

Two More Strings Methods (split and splitlines)

Another way to create lists is by using either of the string methods – split or splitlines.

These two methods (commands) are very similar to one another in the sense that they both

break a string into separate ‘tokens’. Both methods create a new list with each token

becoming a separate list element.

Take for example the following code.

 The first line initialises the variable chomskyStr

[Aside: Colourless green ideas sleep furiously is a sentence composed by Noam

Chomsky, (American linguist, philosopher and cognitive scientist), as an example of a

sentence that is grammatically correct, but semantically nonsensical.]

 Line 2 creates a new list called aList. The string is tokenised and each word becomes

a separate list element as shown.by the output:

The main difference between split and splitlines is exemplified by the program below.

(Notice the use of triple quotes to create the block string which spans multiple lines.)

The string comes from a poem

Green Eggs and Ham written

by Dr Seuss, American author,

political cartoonist and poet

The program creates a new list, bList - each line is a separate element as shown.

Python Programming Page 112

Example Program (fruit machine v2)

The program below simulates a fruit machine. The sample outputs shown here should give a

good idea of what the program does.

Fruit machine simulator program

The program works by reading the contents of a file called

fruits.txt (shown here to the right) into a string called

fileContents. The string is then split into individual tokens

each of which are stored as separate elements of a list called

fruits.

Finally, the choice command from the random library is used

three times. Each time it picks a random element from the fruits

list and displays it.

The purpose of the program is to re-inforce some of the concepts and techniques covered in

this section, and prepare participants to apply some of this learning in the following breakout

session.

Python Programming Page 113

BREAKOUT ACTIVITIES

BREAKOUT 4.1: Random Sentence Generator2

For this exercise you are required to write program that generates a random sentence.

The program will make use of four different lists of strings called articles, nouns, verbs

and prepositions. The syntax rule for a valid sentence is that it must have the following

structure:

article noun verb article noun preposition verb

A sample list of words for each of the four lists is given:

articles “the”, “a”, “one”, “some”, “any”

nouns “teacher”, “student”, “principal”, “library”, “school”

verbs “taught”, “learned”, “read”, “walked”, “ran”

prepositions “to”, “from”, “over”, “under”, “on”

Valid sentences must be syntactically correct but may not make any sense. For example,

- the teacher taught a student to read makes sense while,

- some school walked under a principal is semantically nonsensical!

Hints:

1. The solution will need create a list to store the words of the sentence e.g. wordlist

Initially this list will be empty.

2. The words will need to be selected at random from each list. The following line of code

may be adapted to generate a random word.

3. As words are randomly selected they can be appended to wordlist

4. Once the seven words have been generated they can be displayed in a sentence.

2 Adapted from a problem in Java: how to program, P.J. Deitel, H.M. Deitel, 9th ed., Prentice Hall, 2012

Python Programming Page 114

Reflection.

What were your main thoughts as you engaged with this problem?

How might this exercise be adapted/extended for use in your own

LCCS classroom?

Python Programming Page 115

BREAKOUT 4.2: Data Processing (heights)

At the end of Section 2 we complete a breakout activity based on processing a number of

height values input by the user. We start this activity by presenting a solution to the activity.

The contents of the heights.txt file are shown here to the right. These can be edited and a

new set of values supplied to the program at runtime.

We now add the following program into the mix. This three-liner uses the mean command

from the statistics library to calculate the arithmetic mean of the numbers contained in

the list heightList. If we wanted to calculate the mean of a different set of heights the

programmer would need to change the values in this list.

It is worth browsing to https://docs.python.org/3/library/statistics.html to take a look at the

official Python documentation on the statistics package.

https://docs.python.org/3/library/statistics.html

Python Programming Page 116

Suggested Activities

1. Compare and contrast the two programs

2. Devise a test plan (similar to that shown in the corresponding activity at the end of

Section 2) for the programs. Execute the test plan.

3. Modify the first program so that it uses the statistics package to calculate the mean.

(The variable totalHeight should not appear in the final program.). Repeat the test

plan to make sure your solution works.

4. Continue to modify this program with the following changes:

- instead of there being five separate uses of the readline command, the entire file

should be read into a string by single read command.

- use the split command to create a list of height values from the resulting string

You may wish to look back at the fruit machine v2 example (page 112) for some

technical guidance to complete this activity.

The program should be able to deal with a variable number of heights and as well as

decimal values.

5. Display the following information in meaningful messages (preferably using string

formatting to display any variable data):

- The maximum height

- The minimum height

- The range and interquartile range

- The heights in ascending/descending order

Python Programming Page 117

In what ways do you think this activity might be used to support the

development of metacognitive skills?

Python Programming Page 118

BREAKOUT 4.3: Turtle Directions

The purpose of this activity is to build upon the knowledge we already have about turtle

graphics and apply the concepts from this section to them.

The turtle graphic program shown below contains two lists – angles and distances. Between

them the lists contain ‘encoded’ data that direct a turtle from point A to point B. The program

listing is as follows:

When the program is run it displays the path show.

Experiment by changing the values of the angles and distances to

see what journeys you can come up with.

(Remember that the turtle starts in the centre of the screen facing

right (east). The arrowhead indicates the end of the path.)

Python Programming Page 119

Design a set of appropriate activities that adapt/extend this

activity so that it has the potential to elicit your choice of

concepts and/or techniques covered so far.

Python Programming Page 120

Section 5

Programming Logic

Python Programming Page 121

Introduction

Thus far, we have been dealing with sequential programs i.e. programs which begin their

execution at the first line and execute each line in order until the last line is reached.

In addition to sequence, Python supports two other control structures known as selection

and iteration. The purpose of this section is to explain the syntax and semantics of selection

and iteration, and explore some common programming techniques used to apply them in

real-world contexts.

Selection

Selection structures are commonly referred to as decisions. These structures provided

programmers with a branching mechanism whereby, certain blocks of code may be either

executed or skipped at runtime. The decision of which block of code to select for execution

depends on the result of a condition also known as a Boolean expression.

The main Python keywords used to support decision structures are if, else and elif.

Iteration

Iteration structures are commonly referred to as loops. Loops are used to cause the same

block of code to be executed multiple times. At runtime, the code inside a loop (the loop

body) is executed repeatedly as long as some condition (the loop guard) is met. The loop

guard is also a Boolean expression.

The main Python keywords used to support iteration structures are for, and while.

Three other (less important) keywords that relate to loops are break, continue and pass.

KEY POINT: Selection and iteration are two programming techniques whose

runtime operation is based on the outcome of Boolean expressions

Boolean Expressions

A Boolean expression is any expression that evaluates to either True or False. They form

the basis of all programming logic.

Python Programming Page 122

Hangman!

Hangman is a well-known guessing game usually played by two people using pencil and

paper. One player thinks of a word and the other tries to guess it by suggesting letters within

a certain number of guesses.

The illustration3 below depicts the main steps of the

game and the graphic4 to the right illustrates a sample

run of the game, where the player is trying to guess the

word hangman.

3 http://calab.hanyang.ac.kr/courses/ISD_taesoo/05_Hangman.pdf

4 https://en.wikipedia.org/wiki/Hangman_(game)

https://en.wikipedia.org/wiki/Guessing#Guessing_games
https://en.wikipedia.org/wiki/Word
https://en.wikipedia.org/wiki/Letter_(alphabet)

Python Programming Page 123

Study the illustration on the previous page carefully and identify

the areas where sequence, selection and iteration could be used

in a programming solution for the game.

Python Programming Page 124

Boolean Expressions

Boolean Logic was invented by the mathematician George Boole, 1815-1864 who was the

first professor of Mathematics at University College Cork (UCC). The algebra on which

Boolean logic is based is used extensively to build electronic circuits and write computer

programs. Boolean logic, therefore, forms the basis of all modern digital devices and

software systems.

Boolean expressions are to Boolean algebra, what algebraic expressions are to algebra, and

arithmetic expressions are to arithmetic. At any given moment in time, a Boolean expression

will evaluate to either True or False. It can never be anything in between.

Boolean expressions are so important that it could be argued that the secret to good

programming lies in the formation of good Boolean expressions. This is the responsibility of

the programmer.

KEY POINT: All Boolean expressions evaluate to one of two values - True or

False.

True and False are two Python keywords which technically behave as if they were the

numbers 1 and 0.

Simple Boolean Expressions

A simple Boolean expression is one that uses a single relational operator (e.g. greater than,

less than or equal to etc.) to compare (i.e. relate) two values.

For example, 7 > 3 (seven greater than three) is a simple Boolean expression that

compares the numbers 7 and 3 under the relation of ‘greater than’. It evaluates to True

because 7 is a bigger number than 3. On the other hand, the expression 7 < 3 evaluates to

False, because seven is not less than three.

Python Programming Page 125

Simple Boolean expressions (as created by the basic relational operators) are the basic

building blocks used to implement decisions and loops in Python.

Python supports the six relational operators given below.

Relational operators are binary operators because they need two operands in order to work.

Although in practice operands are usually numeric, operands can be of any datatype that

results from a Python expression. String operands, for example, can be compared using

lexicographic ordering of their constituent characters.

Some more examples of simple Boolean expressions (aka conditions) are presented below.

(Note: 𝑥 = 1, 𝑦 = 0 and 𝑧 = −1.)

Condition Result

6 >= 5 True

0 > 1 False

1 < 0 False

1 == 0 False

4 == 4 True

4 <= 4 True

3 ! = 4 True

3 <= 4 True

Condition Result

5 > 𝑥 True

𝑥 > 𝑦 True

𝑥 <= 𝑦 False

𝑦 <= 0 True

𝑧 > 𝑦 False

𝑥 == 𝑧 False

0 == 𝑦 True

𝑥 ! = 𝑦 True

Python Programming Page 126

Compound Boolean Expressions

Compound Boolean expressions are formed by connecting simple Boolean expressions

together using any of the three Python Boolean operators - and, or, and not.

KEY POINT:

Boolean operators can only operate on Boolean values i.e. True/False.

Just like simple Boolean expressions, compound Boolean expressions always evaluate to

either True or False.

The combinations of values for inputs and their corresponding outputs for and, or, and not

can be conveniently represented in a tabular format known as a truth table.

not is the simplest of the three Python Boolean operators. It is a unary operator meaning

that it can only work on one operand at a time. The truth table showing the relationship

between some proposition A and not A is shown below.

Both and, and or are binary operators meaning that they require two operands to work. The

truth tables for and, and or are shown below.

The (binary) inputs are given by the columns A and B and the output for these inputs is

shown in the rightmost column.

Python Programming Page 127

Examples

For the purpose of the examples shown below we will assume that we have a number of

variables assigned as, x = 1, y = 0, z = −1 and valid = True, finished = False

Condition Result

x == 1 and y == 0 True

x == y or z == −1 True

x ! = y and y ! = −z True

not valid False

z ≤ y and finished False

z > y or valid True

finished and not valid False

not finished or not valid True

Evaluate the following Boolean expressions

True and False

not True or False

True and not True

not True or not False

not True and not False

Python Programming Page 128

The Guessing Game

The remainder of this section will focus on the concepts of selection, iteration and

programming logic. A basic ‘guess the number’ game is used as a platform on which to

develop ideas and techniques associated with these concepts. As new concepts are

introduced they are exemplified by incorporating them so that they add functionality into the

game program. The result is seven versions as follows.

Guess Game v1: This is a basic guess game. The base program generates a random

number which the user is asked to guess. If the user guess is correct the program displays

an appropriate message.

Guess Game v2: This time the program displays a message informing the user that they

were either correct or incorrect based on the value entered.

Guess Game v3: In this version of the game the user is provided with more detailed

feedback about their guess i.e. correct, too high or too low.

Guess Game v4: This is the same as version 3 except that the user is given at most three

chances to guess the correct number. If the user guess correctly within the three allocated

chances the program terminates.

Guess Game v5: In this version of the game, the program continues until the user makes

the correct guess – a subtle but important and powerful enhancement on the previous

version. Each time the user enters a guess the program continues to display one of the three

messages, i.e. correct, too high or too low.

Guess Game v6: A refinement on the previous version whereby after guessing correctly, the

user is offered the opportunity to play the game again. If the user enters “N” for no the game

exits. Otherwise the program generates a new random number and the game starts again.

Guess Game v7: In this final version of the game, the functionality of the game is the exact

same as version 6. However, this version validates any data entered by the user i.e. it

checks that the guess, is in fact, a number before proceeding.

Python Programming Page 129

Selection (if, else, elif)

Selection statements are used by programmers to build alternative execution paths through

their code. As already stated they are commonly referred to as decision statements.

Python provides built in supports for three different kinds of selection statements:

- single option (the basic if statement)

- double option (the if-else statement)

- multiple option (the if-elif-[else] statement)

When a running program executes a selection statement, it evaluates a condition, and based

on the result of this evaluation it will decide which statement(s) to execute next.

The basic if statement

The syntax and semantics of Python’s single option if-statement are illustrated and

described below.

If Python evaluates the condition to True,

then the conditional code inside the if

statement will be executed.

If the condition evaluates to False, then

the conditional code is skipped and

execution continues from the next line of

code after the if-statement.

Note the use of the colon at the end of the

line and also the fact that the conditional

code must be indented.

Flow chart illustration of if-statement

Python Programming Page 130

Example (Guess game v1)

The program below generates a random number between 1 and 10 (number) and prompts

to user to guess the number (guess).

Guessing Game v1

(Uncommenting line 5 will help you test this program faster)

 The if statement on line 10 evaluates the condition guess == number

 The execution of lines 11 and 12 are conditional upon the result of this evaluation.

Notice the indentation of these lines.

They will be executed only if the condition evaluates to True

o The condition will evaluate to True if the guess entered by the user is the same

as the computer’s generated number

o The condition will evaluate to False if the guess entered by the number is not the

same as the computer’s generated number

 The last line is always executed (unconditionally)

Python Programming Page 131

The if-else statement

The syntax and semantics of Python’s double option if-statement are illustrated and

described below.

If Python evaluates the condition to True, the

block of code associated with the if-statement

(i.e. the if-block) is executed.

Otherwise, the block of code associated with

the else statement (i.e. the else-code block)

is executed.

In other words, the else block is executed

only when the condition is evaluated by Python

to False.

Once either block has been executed the flow

of control continues at the next line

immediately following the else-block

Flow chart illustration of if-else-statement

KEY POINT:

All conditional code must be indented to the same level by the programmer.

Finally, it is important to recognise that the two blocks are mutually exclusive. In any given

run of the program either one block or the other will be executed, but never both.

Python Programming Page 132

Example (Guess game v2)

This example extends guessing game v1 by displaying some messages to the user if they

guess the wrong number.

Guessing Game v2

 The condition guess == number on line 10 is pivotal here again

- Lines 11 – 13 are selected for execution if the condition evaluates to True

- Lines 15 – 17 are selected for execution if the condition evaluates to False

 Python will always execute the last line of the above program as it is not part of the if-

else statement

Python Programming Page 133

Compare the logic of the two code snippets below. What do you

notice?

Re order the individual lines of code shown below into a program that:

a) generates two random numbers between 0 and 12

b) calculates their product

c) prompts the user to enter the product of the two numbers

d) displays an appropriate response to the user’s attempt

Note - three of the lines are surplus to requirements.

Python Programming Page 134

The if-elif-[else] statement

The syntax and semantics of Python’s multiple option if-statement are illustrated and

described below.

 The first condition is always inside an if statement

 There can be as many elif statements as required

 Each elif statement must include a condition

 The use of a final else statement is optional (indicated by square brackets)

 The if, elif and else keywords must all be at the same level of indentation.

 A colon must be used at the end of any lines containing if, elif and else

 Each condition is evaluated in sequence. Should Python evaluate a condition to True

then the associated statement(s) are executed and the flow of control continues from the

next line following the end of the entire if-elif statement. If none of the conditions are

found to be True, then Python executes any statement(s) associated with the else.

Python Programming Page 135

The logic of an if-elif-[else] statement is illustrated using the flowchart below.

Flow chart illustration of if-elif-[else]-statement

Use the space below to reflect on what you have learned about

Python’s three types of selection statements.

Python Programming Page 136

Example (Guess game v3))

This example enhances guessing game v2 by displaying more helpful messages to the user

when they make an incorrect guess.

Guessing Game v3

Think about it – when you ask someone to guess a number between one and ten there are

exactly three possible outcomes. The guess can be

- the same as the number you are thinking of

- lower than the number you are thinking of

- higher than the number you are thinking of

KEY POINT: The multiple option if statement should be used to model situations

from the real world where there are multiple possible outcomes that require

separate specific processing. In this example, that processing is a message

tailored to the user’s response.

 In any given run of the above example Python will execute either lines 11 and 12, or 14

and 15, or 17 and 18. These lines are mutually exclusive.

 As was the case with the earlier versions of this program Python will always execute the

last line of the above program as it is not part of the if-elif-else statement

Python Programming Page 137

Fill in the blanks below without altering the logic of the example

program on the previous page. Log your thoughts as you proceed.

Outline any considerations that would have to be made by a programmer to

avoid having to duplicate lines 14 and 17 in the example program.

In what way(s) did either/both of the above tasks promote metacognition?

Python Programming Page 138

BREAKOUT ACTIVITIES (selection)

BREAKOUT 5.1: Task Development

Use the space provided to complete the flowchart shown below.

Python Programming Page 139

Identify and describe five different modifications and/or

extensions you could make to this task that would be suitable

for LCCS

Python Programming Page 140

BREAKOUT 5.2: Automated Teller Machine (ATM) Menu System

The Python program below (copied directly from Section 1) displays the ATM menu shown

on the right hand side.

Based on the above, list as many requirements as you can, that

could be used elicit the concepts and techniques you have

learned in this workshop.

Python Programming Page 141

Iteration (for and while loops)

Iteration is a programming technique that allows programs to execute statements multiple

times. Python provides built in supports for two different kinds of iteration statements:

- the while loop

- the for loop

We now consider these in turn.

The while loop

This is Python’s most general (and therefore) flexible loop construct.

The syntax and semantics of Python’s while loop are illustrated and described below.

In Python, while loops are introduced with the keyword

while. This is followed by some condition which has to

be made up by the programmer (this is the ‘hard’ part!).

If the result of the condition is True, the statement(s)

that make up the loop body are executed. These

statements must be indented.

When Python reaches the last line of the loop body the

flow of control loops back to the condition which is

evaluated again. (Python will know the last line of the

loop body from the levels of indentation.)

The above process continues until the result of the

condition is found to be False.

Flow chart illustration of while loop

Python Programming Page 142

When (and if) the condition is False Python skips the loop body, and the flow of control

resumes at the next statement following the loop body.

It should be noted that it is the programmer’s responsibility to ensure that the loop body

contains a line of code that will cause the loop condition to eventually become False.

Otherwise, the loop will never terminate. Such loops are called infinite loops.

It is also worth noting out that the loop body might not ever be executed. This situation would

arise when the condition evaluates to False before the first iteration. If this happens the

loop body is skipped and the flow of control continues from the first statement after the loop

body.

Because the condition ‘guards’ entry into the loop, it is referred to as the loop guard.

KEY POINT: The loop body is executed each time the loop guard is evaluated

to True.

Python Programming Page 143

Example

The short program serves to demonstrate main features of a while loop.

Simple while loop demo.

The program displays the message Hello World ten times. The string Goodbye is displayed

once before the program exits.

 The loop is introduced by the while keyword on line 7. Note the use of colon (:) at the

end of this line.

 The condition counter <= 10 is central how the loop operates. The loop will be

executed as long as this condition remains True. The condition is initially True

because the variable counter was initialised to 1 on line 4

 Lines 8 and 9 make up the loop body.

- line 8 tells Python to display the string, Hello World

- line 9 tells Python to increase the value of counter by 1 (recall running totals)

 The next line to be executed after line 9 is always line 7. (This is the iteration)

 Each time line 7 is executed the value of counter will have increased by one since the

previous iteration. Eventually, counter will have reached a value of 11 and the

condition will be found to be False. At this point the flow of control jumps beyond the

loop body and line 12 is the next, and final, line of the program to be executed.

Python Programming Page 144

It is well worth investing some time in this example to make sure you understand exactly

how while loops are executed at runtime.

If we define an iteration to be the number of times a loop body has been executed, we can

use the technique of tracing to keep track of the loop’s progress.

Initially, (before any iterations), counter is set to 1, there is no program output displayed,

and the condition counter <= 10 is True. After one iteration of the loop, counter has a

value of 2, the string Hello World is displayed and the condition remains True.

Continue in this way until you complete the ‘trace diagram’ shown below.

Python Programming Page 145

Example (Guess game v4)

Let’s say we wanted to enhance our guessing game to give the user three chances.

We start off in the knowledge that version 3 of the program works properly for one chance.

Our enhancement can be achieved simply by ‘wrapping’ the code from version 3 inside a

while loop that runs three times. A solution is presented below.

Guessing Game v4

The technique of wrapping code inside a loop in very important in the development of

computer programs and systems.

Code wrapping is based on a notion that, if a piece of working code can be written using

sequence/selection control structures only, then it should be relatively straightforward to put

that code inside a loop.

Python Programming Page 146

Complete the ‘trace diagram’ shown below for Guessing Game v4

The diagram has been complete up to, but not including, the point when the user is about to

enter a guess for the first time (i.e. the first execution of line 13).

The computer has generated a random number of 5 which has been recorded as number.

The value has been displayed and counter has been initialised to zero. The condition

counter < 3 has been evaluated to False and this has also been recorded. You take

over from this point.

Proceed by making up a value (i.e. guessing a number) and recording it in the first box

underneath guess. Now trace the execution of line 14. This requires you (instead of Python)

to evaluate the condition guess == number. Record your answer in the second black box.

Continue in this manner until the program has run to completion.

Experiment! Make some changes to the code.

Try achieving the same logic using different conditions e.g.

counter <= 3 or counter < 4. How would these conditions

affect the initial value of counter?

Python Programming Page 147

Example (Guess game v5)

In this version of the game we will introduce a Boolean variable to enable the program to

continue until the user makes the correct guess (no matter how many guesses this may

take!).

Guessing Game v5

A Boolean variable is a variable used to store a Boolean value. In Python the only two

Boolean values are True and False.

In this example, the name of the Boolean variable is correct. It is initialised to False on

line 7. The use of the variable correct (lines 7, 10 and 15) is the central feature of this

program.

The loop keeps going as long as the correct is False. Logically, this is the same as saying

that the loop continues as long as not correct is True. The only place correct is set to

True is on line 15 which gets executed if and only if the value of guess is the same as the

value of number.

Python Programming Page 148

Complete the ‘trace diagram’ shown below for Guessing Game v5

The diagram has been complete up to but not including the first execution of line 12 i.e. the

user is about to enter a guess for the first time.

The computer has generated a random number of 8 which has been recorded as number.

The value has been displayed and the Boolean variable correct has been initialised to

False. The condition not correct has been evaluated to True and this has also been

recorded. You take over from this point.

Proceed by making up a value (i.e. guessing a number) and recording it in the first box

underneath guess. Now trace the execution of line 13. This requires you (instead of Python)

to evaluate the condition guess == number. Record your answer in the second black box.

Continue in this manner until the program has run to completion.

Take a moment to compare the loop guards used in versions 4

and 5. In what ways are they similar? How do they differ?

Python Programming Page 149

Example (Guess game v6)

In this version, we add one final piece of functionality. This time when the user guesses

correctly, instead of terminating the loop (and program), this program will ask the user if they

want to play another game. If the user responds with anything other than N (for no), the

program generates a new random number and continues.

Guessing Game v6

This ‘play again’ logic is incorporated by using another Boolean variable, keepGoing which

is initially set to True (line 8).

The loop will continue as long as the condition on line 11 evaluates to True. But the

condition here is simply keepGoing so as long as this variable remains True the loop will

continue.

The only circumstances where keepGoing is set to False is on line 19. Can you figure out

from the code what these circumstances are?

Python Programming Page 150

Example (Guess game v7)

In this last version of the program there is no new functionality added. Rather, the program

demonstrates a standard technique used to validate data entered by the user.

If you run any version of the guess game before this and enter a non-numeric value as the

guess you will notice that the program crashes (runtime error). The reason for this is that all

earlier versions make the (incorrect) assumption that a user will always enter the correct

type of data, which is not very realistic for any production system.

Guessing Game v7

Take some time to study the validation technique used here (lines 12 – 15) and see if you

can figure out how it works. The condition on line 14 is key. Also notice that lines 12 and 15

are identical but appear at different levels of indentation. A good starting point would be to

isolate the four lines of code into a separate program and experiment.

Python Programming Page 151

The following pseudo-code outlines a general pattern used to ensure some value entered by

the end-user is valid.

read value from end-user

loop for as long as the value is invalid:

 [display error message]

 read value from end-user

process value

Experiment!

Try making the following changes to see what happens.

 - Version 4 change the initial value of counter to 10

- Version 5 change the initial value of correct to be True

- Version 6 change the initial value of keepGoing to be False

- Version 7 remove (comment out line line 18

Python Programming Page 152

The for loop

The for loop is a more specific iteration construct than its while counterpart in the sense

that it is designed specifically for stepping through the items in a sequence.

for loops are the preferred looping mechanism when the number of required iterations is

known in advance (of runtime). Because of their nature they are also commonly used to

traverse strings and lists (which are both sequence types).

The syntax and semantics of a for loop are described and illustrated as follows:

The loop starts by assigning the first item in the

sequence to the loop variable referred to as

iterating_variable. Next, the statement(s) that

make up the loop body are executed.

The loop continues the cycle of assigning the

next item in the sequence to the iterating

variable and then processing it in the loop body

until the entire sequence is used up.

Observe the use of colon (:) and also that the

statements which make up the loop body are

indented.

for loop flowchart

KEY POINT:

It is essential to be able to recognise situations where a loop is required in a

program. The choice of loop construct does not matter greatly. Most loops that

can be programmed with a while construct can also be constructed using a

for construct and vice versa.

Python Programming Page 153

Example

The short program serves to demonstrate main features of a for loop.

Simple for loop demo. Program Output

The program output shown to the right above displays the message Hello World ten times.

The value of counter is also displayed alongside the string. The string Goodbye is displayed

once, before the program exits.

The first thing to observe is how much shorter this program is compared to the simple while

loop program we say earlier.

In order to understand the example, it is helpful to understand how range works. Range can

be thought of as a built-in function which returns a list of values. In the above example the

call range(10) returns a list of all the integers from 0 to 9.

(see https://docs.python.org/3/library/stdtypes.html#typesseq-range for a complete

description.)

The for loop works by iterating over each value in the sequence (i.e. 0 through to 9). At the

start of each iteration the value of the next item in the sequence is assigned to the loop

variable counter.

Notice how at the start of each iteration the iterating variable is assigned the next value in

the sequence. The loop ends when the last value in the sequence has been used.

Once the loop terminates, execution continues at the next line after the loop body.

https://docs.python.org/3/library/stdtypes.html#typesseq-range

Python Programming Page 154

Example - using a for loop to draw the square

We now consider how to use a loop to draw a square using the turtle graphics library. Recall

from earlier

As can be seen the two lines shown below are repeated 4 times – this is an indication that it

should be possible to use a loop.

The same functionality can be achieved by wrapping these lines in a for loop as follows.

We are now ready to attempt our first for loop programming exercises.

Python Programming Page 155

Programming Exercises (for loops)

1. Wrap the following code blocks in for loops to create the shapes shown.

2. Write three separate programs to display the shapes shown.

A pentagon. There are 5

sides and the angle at each

vertex is 72°

A hexagon. There are 6

sides drawn in a rotation of

360°

A circle.

Python Programming Page 156

3. The pygame program below displays the first three rows of the chequer board as

outlined in the breakout session following Section 1 of this manual.

import pygame, sys

from pygame.locals import *

start the pygame engine

pygame.init()

create a 400x400 window

window = pygame.display.set_mode((400, 400))

pygame.display.set_caption('Chequer Board')

define some colors

BLACK = (0, 0, 0)

WHITE = (255, 255, 255)

window.fill(WHITE) # paint the window white

Row 1

pygame.draw.rect(windowSurface, BLACK, (0, 0, 50, 50))

pygame.draw.rect(windowSurface, BLACK, (100, 0, 50, 50))

pygame.draw.rect(windowSurface, BLACK, (200, 0, 50, 50))

pygame.draw.rect(windowSurface, BLACK, (300, 0, 50, 50))

Row 2

pygame.draw.rect(windowSurface, BLACK, (50, 50, 50, 50))

pygame.draw.rect(windowSurface, BLACK, (150, 50, 50, 50))

pygame.draw.rect(windowSurface, BLACK, (250, 50, 50, 50))

pygame.draw.rect(windowSurface, BLACK, (350, 50, 50, 50))

Row 3

pygame.draw.rect(windowSurface, BLACK, (0, 100, 50, 50))

pygame.draw.rect(windowSurface, BLACK, (100, 100, 50, 50))

pygame.draw.rect(windowSurface, BLACK, (200, 100, 50, 50))

pygame.draw.rect(windowSurface, BLACK, (300, 100, 50, 50))

update the window display

pygame.display.update()

run the game loop

while True:

 for event in pygame.event.get():

 if event.type == QUIT:

 pygame.quit()

 sys.exit()

Python Programming Page 157

When the program is run it displays the pattern illustrated below.

Use the space provided to record how you might modify the

program to exploit the power of loops

Python Programming Page 158

Dice Frequency Program

The program below simulates a one roll of a die by generating a random number between 1

and 6 and repeats this process one thousand times. The program then uses the plotly

library to display a bar chart depicting the frequency count for 1000 rolls of a 6 sided die.

Experiment!

Key in the program and make sure it runs without any syntax errors.

1. Modify the code by altering the number of dice rolls. What do you notice? What

hypothesis could be developed by using this program?

2. Examine the three bar charts on the next page. Can you explain the differences?

3. How might this exercise be adapted to some different context suitable for LCCS?

Python Programming Page 159

Python Programming Page 160

BREAKOUT ACTIVITIES (Iteration)

BREAKOUT 5.3: Text Analysis

The table below depicts some of the most common words found in two books – Harry Potter

and the Chamber of Secrets and Alice in Wonderland. Study the data carefully.

Harry Potter and the Chamber of

Secrets
Alice in Wonderland

the 3755

to: 1987

and: 1968

a: 1703

of: 1596

was: 1243

his: 1108

Harry: 1065

said: 1035

he: 975

in: 956

had: 668

at: 644

you: 592

it: 583

that: 564

as: 533

I: 508

the: 1507

and: 714

to: 703

a: 606

of: 490

she: 484

said: 416

it: 346

in: 345

was: 328

I: 261

you: 252

as: 237

Alice: 221

that: 213

her: 203

at: 197

had: 175

What are your observations?

Python Programming Page 161

The data shown was generated by the program listing shown below.

What in your opinion are the main issues in preparing the

above program?

Using your knowledge of plotly gleaned from previous exercises can you add

the necessary lines to the above program so that it generates a chart similar to that

shown below – notice that number of most common is reduced from 20 to 10.

Python Programming Page 162

BREAKOUT 5.4: Sample Applied Learning Task 2

Study the program below carefully and answer the questions that follow.

Python Programming Page 163

Identify the Python constructs and features contained in this

program that you have learned about in this workshop.

Does the program contain any features that you are not familiar

with? If so, what strategies would you use to overcome this

knowledge deficit?

Python Programming Page 164

Discuss the program in the context of LCCS ALT 2 and devise a

suitable brief/assessment instrument to which this (or some

variation of this) would be a possible solution. You should state

all pre-requisites, requirements and assumptions clearly.

Python Programming Page 165

BREAKOUT 5.5: Maths Multiplication Tutor (MMT)

For this final task you are required to implement a Python maths tutor using the guess game

we developed earlier to guide you along the way. Version 1 is provided below.

Your implementation should be phased along the same lines used during the development

of the guess game i.e. complete each version before moving on to the next.

MMT v1

This is a basic version provided above. The computer generates two random numbers and

prompts the user to enter their product. If the user’s answer is correct the program displays a

message.

MMT v2

This time the program should display a message informing the user that they were either

correct or incorrect based on the value they enter.

MMT v3

In this version of the application the user should be provided with more detailed feedback

about their answer i.e. correct, too high or too low.

Python Programming Page 166

MMT v4

This is the same as version 3 except that the program should use a while loop to give the

user at most three chances to get the correct answer.

MMT v5

In this version of the application, the program should continue until the user gets the correct

answer. Each time the user enters an answer the program continues to display one of the

three messages, i.e. correct, too high or too low.

MMT v6

This version should refine the previous version so that after entering the correct answer, the

user is offered the opportunity to continue with a new expression. If the user enters “N” for

no the application should exit. Otherwise the program should generate two new random

number and the application should start again.

MMT v7

In this final version of the application, the functionality should remain exactly the same as

version 6. However, this version should validate any data entered by the user i.e. it checks

that the user’s answer is in fact a number before proceeding.

Identify five additional requirements that could be incorporated

into the MMT application.

1.

2.

3.

4.

5.

Python Programming Page 167

Take one example task/program you encountered in this

workshop, and describe how it could be adapted to a different

context to teach some aspect of Python.

Python Programming Page 168

Section 6

Modular Programming using Functions

Python Programming Page 169

Introduction

Functions are the building blocks of programs. They allow programmers to organise their

code into logically related sections.

In order to understand where functions fit into the overall scheme of things it is useful to

have some understanding of the architecture of a Python program. This is depicted in the

following illustration

As can be seen a Python program is typically made up of many components. One of the key

components is called a module. Modules can be thought of as individual Python script files

(i.e. a file with a .py extension) made up mostly of functions. It is useful to think of a Python

program as a collection of modules.

At runtime, modules and function co-operate with one another to achieve some desired

result. Program execution starts in one special module called the top level module which is

also commonly referred to as the ‘main’ program.

Python Programming Page 170

Modules can be classified into the following three groups:

1. User defined modules: These are modules that are written by the programmer as part

of the program which is being developed (aka the current development)

2. Standard library modules: These are modules that come pre-installed as part of

Python. The Python standard library is designed to save programmers from having to

come up with their own solutions to common programming problems. As such, it

comprises a full suite of off-the-shelf, ready to go solutions in the form of built-in

functions.

Some examples of Python libraries we have already come across are math, random,

statistics, and turtle. See https://docs.python.org/3/library/index.html for a

complete reference.

3. 3rd party modules: These are modules that are developed by an external source either

for commercial purposes or as open source. There are literally thousands – some

examples include tkinter, numpy, plotly, scipy, Django, and flask. The Python

Package Index (PyPI) is a repository of software for the Python programming language.

See https://pypi.org/ for more information.

KEY POINT: A Python program consists of one or more modules and modules

are made up of functions. Each individual module is a Python script or .py file.

So, modules and functions are constructs used by programmers to organise their code into

separate units (or chunks). A package is another such construct – it is used to group a

number of related modules into a single entity. Conceptually, it is helpful to think of a

package as a set of modules that reside on the file system in the same folder/directory.

Programmers can use the Python import statement to make the functionality of external

modules accessible to the script they are currently developing. These external modules can

be individual modules or multiple modules that have been grouped together into a package.

https://docs.python.org/3/library/index.html

Python Programming Page 171

For the purpose of Leaving Certificate Computer Science (LCCS), a typical Python program

might be made up of a single file that draws on and exploits the functionality made available

by the standard library and, potentially, some other third party package(s).

Most Python files are organised into three sections – the import statements (typically at the

top), the function definitions (by far the longest and most important section) and finally the

main code i.e. the section from where the program execution begins.

We will now take a closer look at functions.

Functions

The ‘art of computer programming’ can be seen as a process of designing and creating

individual functions and combining them together into larger units of code called modules.

Over time, programmers combine these modules to produce the final program.

We have already learned that functions provide a means for programmers to organise their

code, but what exactly is a function and why are they important?

KEY POINT: A function is a short piece of re-usable code that carries out a

specific task.

Each individual Python module is (mostly) made up of functions.

User-defined vs Built-in functions

Functions are very useful because they typically provide solutions to common programming

problems e.g. display some text on the screen, read data from the end-user, send a tweet,

process a cash withdrawal etc.

In certain cases, the programming problems are so common that Python provides a built-in

function to do the job. Such functions are called built-in functions.

In other cases, the problem to be solved is so specific to the program being developed that

the programmer needs to design and write the code themselves. Such functions are called

user-defined functions.

Python Programming Page 172

All functions, regardless of whether they are built-in or user-defined are given a name as part

of their definition. The function name can then be used in a program to invoke the code

contained in the function.

We’ll examine the syntax and semantics of defining and invoking functions shortly but first

let’s take a closer look at the two main reasons why functions are considered important:

1. they lead to modular systems

2. they can be used to maximise code reuse and minimise code redundancy

Large scale software systems are very often developed by breaking big problems down into

smaller problems (decomposition). While designers and programmers are working on the

detail of one part of the system they can ignore the rest of the system (abstraction).

Consider the functional decomposition diagram of an ATM/Bank Transaction system show

below. The diagram shows the system broken down into a number of smaller sub-systems.

The functionality of each sub-system can be implemented using functions. This piece-by-

piece approach to developing systems is sometimes called divide and conquer.

Functions are a programming construct that support this divide and conquer approach to

software development. They lend themselves to modular systems which are easier and less

costly to maintain than their non-modular counterparts.

Python Programming Page 173

A second reason why functions are so important is that they can be used to minimise (and

even avoid) code duplication. Consider the following example.

Example 1 – Maximising code reuse and minimising redundancy

Study the short program shown below that displays a slightly adapted version of the Dr

Seuss poem, Green Eggs and Ham

Evaluate the above program by asking - do you recognise any

patterns? Is there any code duplication? Can you spot any typing

mistakes? Elaborate.

The above code is considered poor design because it contains duplication. Lines 1,2 are

duplicated in three different places. This is an example of redundant code. To eliminate the

redundancy, we write a function to display the chorus.

Python Programming Page 174

The program below uses a function to eliminate the duplication referred to earlier.

This program displays the same

output as the program on the

previous page – the only

difference is that this program

uses a function called

displayChorus to eliminate

duplication of code.

Every function must have a name (assigned by the programmer). In this case, the name of

the function is displayChorus and it is defined (or made known to Python) on lines 1–5

inclusive.

The lines from line 7 onwards are executed in sequence. Lines 7, 12 and 17 call the function

displayChorus. Every time the function is called the lines 2-5 are executed. Even though

these lines only appear once in the program they are used on three different occasions.

KEY POINT: When a function is called, the flow of control jumps to the first

line of the function and execution continues from that point to the last line of

the function. Once the last line of the function has been executed the flow of

control jumps back to the point from which the call to the function was initially

made.

Python Programming Page 175

Example 2 – Modular Code

Let’s continue with the same example to demonstrate the use of functions to develop

modular code.

In this program, the code to display each part of the poem is ‘factored’ into separate

functions. The program is considered better than the two previous versions because it is

more modular. Modular code is the result of good design and is both easier and less costly

to maintain than non-modular code.

Consider the differences

between the program shown

here and the two programs

shown earlier in this section.

Even though the three

programs are different they all

do the same thing.

Notice the different level of

indentation inside each

function body.

The above listing defines three functions as follows:

- The function displayChorus is defined on lines 1-5

- The function displayVerse1 is defined on lines 7-11

- The function displayVerse2 is defined on lines 13-17

Lines 19-23 are executed in sequence and cause the poem to be displayed.

Python Programming Page 176

Summary

 A Python program is made up of one or more modules. Each individual module is a

Python script or .py file

 Modules are made up mostly of functions.

 Functions are the building blocks of modules (and by extension, programs)

 A function is a short piece of re-usable code that carries out a specific task.

 All functions have a name which must be used to invoke the function’s code

 Python comes with a set of pre-installed modules - called the standard library

 Logically related modules can be grouped together into packages. A package is made up

of multiple modules.

 The functionality of individual modules and entire packages can be made accessible to

other Python files by using the import statement

 Functions that do not require the import statement in order to be accessible are known

as built-in functions e.g. print, input. Python 3.6.x comes with 67 built-in functions;

these are listed in the appendix – more details can be found by browsing to

https://docs.python.org/3/library/functions.html

Reflect on what you have learned about functions so far. Use the

space below to explain what functions are and why they are

important.

Develop your own example to motivate the use of functions.

(The example used in the text was the Dr Seuss poem, Green

Eggs and Ham)

https://docs.python.org/3/library/functions.html

Python Programming Page 177

Basic Function Syntax

Once the ‘need’ for a function in your program has been recognised (the difficult bit!) the

next step is to write the code. For this, we need to understand some syntax (the easy bit!).

Functions are made known to Python by writing a function definition. In Python, the function

definition is made up of two parts - a header and a body.

- the function header (aka the function signature or prototype) is always the first line of the

function definition

- the function body contains the Python statements required to carry out the work of the

function.

The code below illustrates the definition of a function called displayPoem. The function

header is on line 1 and the function body runs from line 2 to 5 inclusive.

Function definition for displayPoem

The function header

Every function header is composed of four separate parts:

(i) The word def: This is a Python keyword which tells Python to create a new function

object. Every function must start with the def statement.

(ii) The function name (in this case displayPoem):

It is up to the programmer to decide what name to give a function. The rules for

naming functions are the same as those for naming variables.

(iii) Brackets: These provide a mechanism for passing information into functions. In this

example, no information is being passed into the function and therefore the contents

of the brackets is empty.

(iv) Colon: The colon is used to terminate the function header. If the colon is omitted,

Python will display a syntax error.

Python Programming Page 178

The function body

The body of every Python function consists of one or more Python statements. These

statements combine to provide the function’s task. Although there is no limit to the number of

statements that can be in a function body, it is generally considered good practice to keep

functions short.

Notice how the four lines of code that make up the function body (lines 2 – 5) are indented.

In Python, the statements inside a function body must always be indented. The function

body ends when the indentation ends i.e. when the next statement appears at the same

level of indentation as the def statement.

Calling a function

It is important to realise that the code inside a function body will not be executed unless the

programmer explicitly requests it to be. The term for such a request is a function call.

KEY POINT: A function call causes the code inside the function body to be

executed.

Functions can be called (or invoked) at runtime by writing the name of the function followed

by brackets. The code to call the function displayPoem is shown below.

This line calls the function displayPoem

Note, the brackets are needed but def and colon are not

When the above call is made the four lines in the function body are executed thus causing

the following four lines of text to be displayed on the output console.

One fine day in the middle of the night,

Two dead men got up to fight,

Back to back they faced each other,

Drew their swords and shot each other.

The semantics of a function call are now explained.

Python Programming Page 179

Call semantics

Consider the order in which the lines of code in example program below are processed by

Python.

Python starts at line 1, notices that it is a function definition and skips over all of the lines in

the function definition until it finds a line that is no longer included in the function (line 8). On

line 8 it notices that it has a function to execute, so it goes back and executes that function –

lines 2-6 inclusive. Once all the lines in the function body have been executed it continue at

line 9. The result of the above program is:

Jack loves to do his homework

He never misses a day

He even loves the men in white

Who are taking him away

The End!

Describe how the above program could be modified so that it would

output the text shown below.

Can you come up with more than one solution and if so which solution

do you think is better?

The Start!

Jack loves to do his homework

He never misses a day

He even loves the men in white

Who are taking him away

The End!

Python Programming Page 180

Design and write a function to display the output shown below.

Write a line of code to call your function.

Way down south where banannas grow,

A grasshopper stepped on an elephant’s toe.

The elephant said, with tears in its eyes,

‘Pick on somebody your own size.’

Study the program shown carefully and identify any error(s).

SYNTAX CHECK: When Python comes across a word it does not

understand it displays a syntax error. Therefore, when a call is made to a

function using a name, a function of that name must already have been

made known to Python with the def keyword.

Python Programming Page 181

Guidelines and Rules for Naming Functions

We begin with a few simple guidelines as opposed to actual rules. These guidelines help

improve program readability (and therefore maintainability).

Function names should be meaningful i.e. they should in some way describe what the

function does. Since functions are usually actions, the name should contain at least one

verb.

If a function name is only one single word, the convention is to use lowercase; if the name of

the function is made up of more than one word, the use of camel case or underscore as a

means of delimiting the words is considered good practice.

The basic syntax rules for naming functions are:

 A function name cannot be a Python keyword (e.g. def, if, while, etc.)

 Function names must contain only letters, digits, and the underscore character, _.

 Function names cannot have a digit for the first character.

Comment on the validity and quality of each of the following

function names

a) sendTweet

b) calculate_salary

c) _login

d) bin

e) 2binary

f) MAX_OF_3

g) Binary Search

h) Search*

i) return

j) Print

k) doSomething

Python Programming Page 182

Function Parameters and Arguments

Let’s return to the homework function we were looking at earlier and ask the question – how

can we modify the function to display the verse using names other than Jack?

Every time this function is called

it always displays precisely the

same text. We’d like to move

away from the concrete name –

Jack – to a more abstract name

– anybody.

One solution would be to have a different version of the function for each different name we

wanted to have it display, but this would contradict the whole purpose of functions which is to

eliminate code duplication.

Another solution is to use parameters.

What we really want is some way of telling the function what name to display as part of the

verse i.e. we need a means to pass information into the function from the code outside the

function. This is exactly the purpose of parameters.

A parameter is a special kind of variable which appears as part of the function header and

can be used inside the function body. Take a look at this!

David loves to do his homework

He never misses a day

He even loves the men in white

Who are taking him away

The function homework modified to use a parameter Program output

Python Programming Page 183

KEY POINT: A function parameter is a variable which gets it value from the

argument passed in. When a function is called value of the argument is

assigned to the parameter.

Notice personName appears between the brackets in the function header? This is a function

parameter. Parameters are received by functions.

Notice also the text James between brackets in the function call (line 8)? This is a function

argument. Arguments are passed into functions.

Functions can be defined to accept multiple arguments.

Hello World

How are you today?

The function displayGreeting has two parameters Program output

Notice the use of a comma to separate the parameters in the function header (line 1) and the

arguments in the function call (line 6).

When the function displayGreeting is called Python performs two assignments:

- the value of the first argument (i.e. Hello world) is assigned to the parameter msg1.

- the value of the second argument (i.e. How are you today?) is assigned to the parameter

msg2.

Parameters are received into a function in the same order as the arguments provided. Check

what happens if the arguments were switched around like this in the function call.

Python Programming Page 184

Thus far in this section the arguments used in the example programs have all been string

literals. However, arguments can be literals of any datatype (e.g. numeric, Boolean etc.);

arguments can also be expressions made up of variables and/or literal values together.

Be careful though - as a general guide the number of arguments provide should match the

number of parameters provided for in the function header.

Experiment!

Predict what the following calls to the function displayMessage

would do? After making each prediction you should use Python

to see if you were correct.

5.

6.

7.

8.

Python Programming Page 185

9.

10.

11.

12.

13.

14.

Python Programming Page 186

Reflect.

What conclusion(s) about the syntax and semantics of parameters

and arguments did you arrive at from the previous experiment?

Devise a number of test cases that would test the assertion that the

number of arguments passed in as part of the function call should

match the number of parameters provided for in the function header

KEY POINT: The advantage of using parameters and arguments is that they

make functions much more flexible and provide for more general solutions to

problems.

The runtime behaviour of a function can be altered by passing different arguments into it.

This is useful, and a very common way, of achieving abstraction.

Python Programming Page 187

Function Return Values

Functions can be thought of little machines (black box) that accept input(s) and produce

output(s).

In the previous section we learned that data can be passed into functions through the use of

arguments (at the function call) and parameters (as part of the function header). In this

section we explore the use of the return statement as a means to pass data out of a

function.

Consider the function shown below to add the first n non-negative integers.

range(n) generates a list of integers from

0 to n-1 e.g. range(10) [0, 1, 2, 3, … 9]

The for loop iterates over each integer

with the value of the next item in the

sequence being assigned to the loop

variable i

The function works by maintaining a running total of all the numbers from 0 to n+1 in the

variable total. At the start of each loop iteration, the loop variable (i) is assigned the next

value in the sequence. On each iteration of the loop, the value of the loop variable is added

to total and the result is used to update total with the new running total. The loop ends

after the last value in the sequence has been processed.

Line 7 shows the return statement being used to pass the value of total out of the

function.

To test our function – let’s say we wanted to add the first 10 integers - would add the line

 to call the function.

Python Programming Page 188

Experiment!

Key in the above code and make the function call.

Explain why nothing appears to happen?

The reason nothing appears to happen is that although the function is called and it does

calculate and return the sum of the first 10 non-negative integers, the calling code takes no

action to save or process the result.

KEY POINT: The return value of a function can be saved for further processing

by making the function call part of an assignment statement.

Line 9 in the code below assigns the result of the function (i.e. total) to the variable

answer.

The value of total is passed out of the function (line 7) and assigned to the variable answer (line 9)

Python Programming Page 189

Alternatively, the programmer may decide there is no need to save the result of a function in

a variable and process the result as part of the call. This type of inline processing is shown

on line 10 of the code below where the result of the function is passed in as an argument to

the print built-in function.

In this example the result of the function is not caught by the calling code. Rather, it is

passed directly as an argument to print. This technique is called function composition.

In situations when a functions are used directly as arguments to other functions, Python

starts at the innermost function and works its way out i.e. the inner function is always

evaluated first and evaluation continues from right to left.

For example, let’s say we had a function called sub to subtract two integers (b from a) as

shown below.

When run, the code would display 3, −5, and −2 on separate lines.

As a final note it is worth pointing out that It is not always necessary for a function to return

data. A return statement may be omitted entirely or can be used without an expression. In

both cases the value returned by Python is None.

Python Programming Page 190

Examples and Exercises

Study each of the following examples carefully – read the code first, predict what it would do.

Then, key the code in and run it to test your prediction(s). In each case you should complete

the reflection exercise provided before you finally move on to implement the programming

challenges at the end.

Temperature and Distance Conversions

The program below implements two functions:

(i) cent2fhar converts from Centigrade to Fahrenheit and

(ii) kms2miles converts from kilometres to miles

What you have learned about functions from this example?

1. Modify the program so that the constant values (e.g. 9/5, 32 and 0.62) are

stored in variables

2. Extend the program with functions to convert from a) miles to kilometres and b)

Fahrenheit to Centigrade

Python Programming Page 191

Compound Interest

The program below can be used to find out which would yield a greater future value:

Scenario A: €10,000 at a rate of 5% for 10 years or

Scenario B: €10,000 at a rate of 10% for 5 years

The formula used is 𝑭𝑽 = 𝒑(𝟏 + 𝒊)𝒕 where, 𝑝 is the initial principal, 𝑖 the interest rate,

expresses as a decimal, and 𝑡 the time in years.

(pow(x,y) is a built-in function that returns x raised to the power of y.)

What you have learned about passing information in and out of

functions from this example?

1. Modify the program so that it can accept the values for principle, interest and

time from the end-user

2. Extend the program so that it can compare compound interest with simple

interest

Python Programming Page 192

Maximum of Three Numbers

The function below finds and returns the largest of any three integers.

The solution is based on three, two-way comparisons in which each of the integers is

compared to the other two. The individual comparisons are combined into a compound

Boolean condition using the and operator.

Reflect.

How has this example extended your knowledge in relation to forming

Python Boolean expressions?

1. Modify the program so that it prompts the end-user to enter three values and

then displays their maximum in a meaningful output message.

How would this implementation be altered if the three numbers were a)

randomly generated or b) read from a file?

2. Use the flowcharts on the next page to implement two alternative solutions for maxOf3

3. Design a flowchart to find the minimum of three numbers.

4. Use your flowchart to implement a function to find the minimum of three values. Call it

minOf3. You could start by copying and pasting the maxOf3 function definition and

renaming it.

Python Programming Page 193

Flowchart 1

Flowchart 2

Python Programming Page 194

Boolean Functions

Boolean functions are functions that return either True or False usually to indicate the

outcome of some test. By convention the name of a Boolean function starts with the prefix

is e.g. isEven might be a Boolean function that tests the ‘evenness’ of a number.

The function uses the remainder

operator (%) to test whether the

value passed in as number is even

or not – if it is the function returns

True. Otherwise, the function will

return False.

The code shown here to the right

demonstrates how the above

function could be used to display

all the even numbers between 1

and 100.

The line is the key. Here, the call to the function appears as part of a

conditional statement. This is fine, since conditions evaluate to True or False and the

function isEven is guaranteed to return one of these values.

We can exploit our knowledge of

even and odd numbers to define the

function isOdd as shown. The

function applies the not operator to

the result of the call to isEven and

returns the result to the caller.

This is a good example of abstraction because the

implementation of isOdd hides the detail.

Implement the following two Boolean functions

A function to take two values and return True if they are

both equal; False otherwise.

A function to do the opposite to isEqual

Python Programming Page 195

A prime example

A prime number is a positive integer that has exactly two factors; itself and 1.

The Boolean function below isPrime determines whether the number passed in is prime or

not. The function will return True if number is a prime number; False otherwise.

The function works by attempting to divide every integer from 2 up to half the number being

tested (numToCheck) - if the division leaves no remainder, it means the number being

checked has factors and is therefore not prime. The following exercises, based on the test

harness provided are designed to be used to explore the function isPrime.

A test harness for isPrime

a) Predict what the test harness would do?

b) Run the test harness? Was your prediction correct?

c) Investigate. The program looks for factors up to half the number being checked. What

would happen if the program stopped at the square root?

d) Modify the test harness so that it displays the first 100 prime numbers.

e) Make a program that displays the nth prime where n is a number entered by the end

user.

Python Programming Page 196

A case study of leap years

Boolean functions provide a useful framework which can be used to determine whether a

given year is leap or not. One example is presented as follows:

Key in the code and use it to

determine whether the years listed

are leap or not.

2000

1900

2017

2012

2100

2400

2600

Use the code to derive and record five facts about leap years

1.

2.

3.

4.

5.

Describe when is a year a leap year

Python Programming Page 197

Now examine the two implementation below – one is correct and

one contains a subtle error (i.e. one version reports incorrectly

that 2000 is not a leap year.)

Can you explain the subtle error and suggest/implement a

solution.

In isLeapV2 above can you justify the need for the second elif

block? Explain.

Python Programming Page 198

Encapsulate the code shown below into two functions – call them

isLeapV3 and isLeapV4

Compare and contrast the two functions isLeapV3 and

isLeapV4.

Write an one line Boolean function to determine whether a given

year is leap or not

Python Programming Page 199

Using Functions to Validate Data

Functions provide programmers a convenient way to organise code that perform specific

tasks such as data validation. Consider the following scenarios and examples.

1. One common scenario faced by novice programmers is the need to read non-negative

integers from the end user. Since the input command returns a string we need to write

code that ensures the data entered is numeric before converting it to an integer using

int

The following four solutions (and there are many more!) are offered for consideration.

Which of the above solutions do you prefer and why?

Would the functions work to read negatives or floating-point values?

Python Programming Page 200

2. Building on the previous scenario, it may be that we need to make sure that the number

entered is within a specific range.

This time we offer two versions of a solution

Compare and contrast the two solutions. What is the main difference?

Comment on the use of the flag valid in the above code. Under what

circumstance is the value of valid set to True?

3. The function below can be used to ensure a user enters either Y or N

Can you suggest any alternative solution(s)?

Python Programming Page 201

Programming Exercises 1

1. A factor is any integer which divides exactly into another integer.

For example, 5 is a factor of 20 because 5 divides exactly into 20 (20 ÷ 5 = 4) leaving no

remainder.

The code below depicts two Boolean functions isFactorV1 and isFactorV2. Both

accept two arguments, a1 and a2 and return True if a1 is a factor of a2; False

otherwise.

Which of the two implementation do you prefer and why?

The complete list of factors of 20 is: 1, 2, 4, 5, 10, and 20.

Write a program that lists all the positive factors of any positive integer entered by the

end-user

2. The greatest common divisor (GCD) of two integers, a and b is the largest integer that

divides both of them with no remainder. Study the steps shown below to find the GCD of

63 and 72:

Step 1: List the factors of the two numbers:

The factors of 63 are: 1, 3, 7, 9, 21, 63

The factors of 72 are: 1, 2, 3, 4, 6, 8, 9, 12, 18, 24, 36, 72

Step 2: Find the largest integer that these two lists share in common i.e. 9

Design and implement a function to find the GCD of any two positive integers.

Python Programming Page 202

3. Write a program that reads a date as three integers (day, month and year) from the

keyboard. The program should output the message Valid if the date is valid and Invalid

otherwise. A valid date is any date spanning from 01/01/2000 up to the current date.

4. Ordinal numbers are the words representing the rank of a number with respect to some

position (i.e. first, second, third, etc.). Ordinal numbers are alternatively written in English

with numerals and letter suffixes: 1st, 2nd, 3rd, 4th, etc.

Write a function called ordinal that accepts a

(validated) number as input and returns a string

representation of its ordinal value by

concatenating an appropriate suffix to the number

that was inputted.

The table shown to the right lists some example

inputs and outputs.

Input Output

1 1st

2 2nd

3 3rd

12 12th

21 21st

Hint #1: If the number ends in 11, 12 or 13 the suffix is ‘th’. In all other cases the suffix can

be determined from the last digit of the number from the table below.

Number 0 1 2 3 4 5 6 7 8 9

Suffix th st nd rd th th th th th th

Hint #2: The last two digits of a number can be extracted by using modulo 100 and the last

digit of a number can be extracted by using modulo 10.

Hint #3: The solution can be arrived at by re-arranging the code below into the correct order

Python Programming Page 203

5. Modify the program from exercise 3 to display the date in the format d MMM yyyy,

where,

- d is the ordinal day number

- MMM is the abbreviated month name (i.e. Jan – Dec)

- yyyy is the four-digit year.

6. The table to the right displays a 10 step

algorithm for calculating the date of

Easter Sunday for any given year

(given by the pth day of the nth month)

The code on the left hand side below

provides a partial implementation of the

algorithm. The code on the right shows

implementations of ordinal and

toEasterMonth

a) Complete the Python implementation of the algorithm started above

b) Use your algorithm to display the dates of Easter Sunday between 2010 and 2030

c) Investigate the earliest and latest dates of Easter Sundays in the 21st century

Python Programming Page 204

d) Investigate different strategies (e.g. plotly, Microsoft Excel) you could use to illustrate

the data in a histogram such as the one illustrated below5.

Distribution of the Easter Sundays over a 5,700,000 year cycle

5 Taken from https://en.wikipedia.org/wiki/Computus#/media/File:Easter_Distribution.svg

Python Programming Page 205

Recursion

Recursion is an example of a divide-and-conquer problem solving technique whereby a

solution is expressed in terms of a simpler version of the same problem.

Once classic example is the factorial function which is defined as follows:

The factorial of a non-negative integer, 𝑛 denoted by 𝑛! (pronounced n factorial) is the

product of all non-negative integers from 𝑛 down to 1 and where 0! is accepted to have a

value of 1.

𝑛! = 𝑛 × (𝑛 − 1) × (𝑛 − 2) × … × 3 × 2 × 1 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 > 0 𝑎𝑛𝑑 0! = 1

The evaluation of 5! for example is the product of all the

integers from 5 down to 1 inclusive as shown here to

the right:

5! = 5 × 4 × 3 × 2 × 1 = 120

The factorial of a non-negative integer, 𝑛 can also be defined as 𝑛 multiplied by the factorial

of 𝑛 − 1 (for all 𝑛 > 0). This can be expressed mathematically as follows:

𝑛! = 𝑛 × (𝑛 − 1)! 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 > 0 𝑎𝑛𝑑 0! = 1

Notice how this definition defines factorial in terms of itself. This is the essence of recursion.

KEY POINT: A recursive function is a function that is defined in terms of itself.

The code below shows both non-recursive and recursive implementations of factorial.

non-recursive factorial recursive factorial

Python Programming Page 206

Let us consider how 5! would be evaluated recursively.

The evaluation can be considered in two stages. In the first stage (illustrated below) the

number whose factorial is being sought is multiplied by the factorial of the previous number.

This ‘chain’ of operations continues until 0! is reached.

5! = 5 × 4!

4! = 4 × 3!

3! = 3 × 2!

2! = 2 × 1!

1! = 1 × 0!

0! = 1

In the second stage of the evaluation the chain is ‘unwound’ starting from the evaluation of

0!. The result of this enables the completion of each successive step up the chain until 5! is

reached. This is depicted as follows

0! = 1

1 × 0! = 1

2 × 1! = 2

3 × 2! = 6

4 × 3! = 24

5 × 4! = 120

5! = 120

Python Programming Page 207

The plotly library module can be

used to create a visualisation of the

factorials of the first six non-negative

integers.

The chart generated by the program

to the right is shown below.

Program Context and Call stack

It is worth noting that recursion is considered to be computationally expensive because it

requires a relatively large amount of memory to implement

KEY POINT: Recursive function are memory intensive

To understand why it is the case, it is first necessary to understand two concepts: the

program context and the call stack.

The program context can be thought of as the internal program state used by Python as it

executes a program. The program state consists of data such as the address of the current

instruction, variables and their values. The call stack is an area of memory where Python

saves the program context when a function is called. So, every time a function is called,

Python makes a copy of the current program context and saves it on the call stack. When

the flow of control eventually returns to the function, the contents of the call stack are loaded

back in as the current program context. (This process is referred to as popping the stack.) In

this way, a program can continue running with the same context it was using at the point

when the call to the function was made.

Python Programming Page 208

The code shown here to the right is a

recursive implementation of the sumOfN

function described earlier. The purpose of

the function is to return the sum of the first

n integers.

When line 8 of the program is executed the

program context is saved at the bottom of

the call stack – shown to left in the

illustration below.

This is the program context at the point when sumOfN(5) was called. The call stack is

progressively built up in response to the successive recursive calls to the sumOfN function

made on line 6. This continues until sumOfN is called with an argument of zero.

The current program context is saved on top of the stack each time the function sumOfN is called

At this point the condition on line 3 evaluates to True and the stack begins to unwind on a

last-in, first-out (LIFO) principle. The program context at the point of each call to sumOfN is

restored in the reverse order to which it was saved. The addition operation on line 6 is

completed for each call, eventually leading to an answer of 15.

The stack unwinds eventually leading to the answer, 15

Python Programming Page 209

Explain the recursive nature of any/all of the following

a) The process for finding the nth Fibonacci number, n>1 (see bottom of page)
b) The process for finding the greatest common divisor of two numbers (Euclid’s algorithm)
c) The process for finding the lowest common multiple of two numbers
d) A binary search
e) A sorting algorithm of your choice

Write a recursive function to implement any or all of the above

algorithms

Fibonacci

A Fibonacci sequence is defined to be made up of Fibonacci numbers as follows:

- the first Fibonacci number is, 𝑓𝑖𝑏(0) = 1

- the second Fibonacci number is, 𝑓𝑖𝑏(1) = 1

- the nth Fibonacci number 𝑓𝑖𝑏(𝑛) = 𝑓𝑖𝑏(𝑛 − 1) + 𝑓𝑖𝑏(𝑛 − 2)

After the first two numbers in the sequence each successive number is the sum of the

previous two.

Thus, the first 7 numbers in the Fibonacci sequence are 1, 1, 2, 3, 5, 8, 13.

Python Programming Page 210

Final Programming Exercises

1. Test your knowledge of Python by stating whether each of the following statements

relating to function are True or False

a) The last character in a function header must always be a colon

b) A function definition must appear in a program before it can be called

c) Function names can begin with numbers

d) Function names cannot begin with the underscore character

e) A function name cannot be the same as a Python keyword

f) A function name can be the same as an existing Python built-in function

g) The function body must contain at least one statement

h) It is not necessary to indent every line in the function body

i) The statements inside a function body all must be indented to the same level

j) If a function contains only one statement, that statement can appear on the same line as

the function header

k) Function names must be unique i.e. no two functions can have the same name

l) Every function must accept at least one argument

m) When a function is called, the number of arguments passed in must match the number of

parameters specified in the function header

n) Not every function returns a value

o) A function call can be used as an argument to another function

p) The last line of every function must be a return statement

q) Every function must contain at least one return statement

r) A function can contain several return statements

s) A function can return multiple values

t) The value returned by a function must be assigned to a variable (in the calling statement)

Experiment!

It would be a good exercise to design a simple test program to verify each answer.

For example, to find out whether the last character in a function header must always be a

colon simply write a short program with a function header that does not end in a colon. Run

the program and see what happens.

Python Programming Page 211

2. Study the code listing below and see if you can figure out what it does. Use the space on

the right hand side to record the predicted output.

OUTPUT

a) Now key the program in and run it. Compare the predicted output with the actual

output. Is the actual output the same as the expected output?

b) How would the output of the program differ if lines 7 and 12 were removed? Try it.

c) What do you think it would be a bad idea to insert a call to the function bar inside the

function foo?

d) Make the changes necessary so that following outputs are generated. Answer each part

separately and in turn.
(i)
Starting bar()
Leaving bar()
Starting foo()
Leaving foo()
Starting foobar()
Leaving foobar()

(ii)
Starting foobar()
Starting foo()
Leaving foo()
Leaving foobar()
Starting foo()
Leaving foo()
Starting bar()
Leaving bar()

(iii)
Starting foo()
Starting bar()
Leaving bar()
Leaving foo()
Starting bar()
Leaving bar()
Starting foobar()
Starting bar()
Leaving bar()
Leaving foobar()

Python Programming Page 212

3. The acronym CAPTCHA stands for Completely Automated Public Turing Test(s) to tell

Computers and Humans Apart.

Arrange the blocks of code shown below into the correct order so that it produces a program

that generates a CAPTCHA, displays it to the user, prompts the user to enter this value, and

displays Correct! if the value entered is the same as the computer generated CAPTCHA;

and Incorrect! otherwise.

a) modify the program so that CAPTCHAs of arbitrary lengths can be generated

b) suggest how the program might behave if the line global captcha was removed from

the function generateNewCAPTCHA

4. Write a program that reads a password from the end-user and validates it according to

the following constraints:

 Passwords must be between nine and twelve characters in length and must be made up

of a mixture of, upper and lower case letters, digits, and symbols.

 The following symbols are permitted: _, +, -, *, /, !, ?, &, @, ^, and one other symbol of

your choice.

Python Programming Page 213

5. The Collatz sequence6 is defined as follows for the set of positive integers:

𝑛 → 𝑛/2 (for all 𝑛, even) and 𝑛 → 3𝑛 + 1 (for all 𝑛, odd)

Using the rule above and starting with 6, we generate the following sequence:

6 → 3 → 10 → 5 → 16 → 8 → 4 → 2 → 1

It can be seen that this sequence contains 10 terms – starting at 6 and finishing at 1.

Although it has not been proven yet, it is thought that all starting numbers finish at 1.

Implement the Collatz sequence algorithm in Python by converting the pseudo-code below.

Prompt the user to input a positive number – call it N

While N is not positive:

 Display an error message

Prompt the user to input a positive number – call it N

While N is not 1:

 If N is even

 Compute N = N/2

 Else

 Compute n = 3n+1

 Output N

6. Design and implement a function that finds the sum of all the multiples of 3 or 5 below

1000. (Hint: the answer is 233,168)

7. A perfect number is a number whose factors (excluding the number itself) add up to the

number (e.g. 6 = 3 + 2 + 1). Write a program to list the first four perfect numbers.

8. An amicable pair consists of two integers for which the sum of proper divisors (the

divisors excluding the number itself) of one number equals the other. The smallest pair of

amicable numbers is (220, 284). They are amicable because the proper divisors of 220

are 1, 2, 4, 5, 10, 11, 20, 22, 44, 55 and 110, of which the sum is 284; and the proper

divisors of 284 are 1, 2, 4, 71 and 142, of which the sum is 220.

Implement a function isAmicable(n1, n2) to test whether n1 and n2 make an

amicable pair.

6 http://mathworld.wolfram.com/CollatzProblem.html

Python Programming Page 214

BREAKOUT ACTIVITIES (Functions)

BREAKOUT 6.1: ATM System

Consider the following trimmed down version of the ATM menu first introduced in Section 1

(breakout 1.1) and developed further in Section 2 (breakout 2.2)

Code to display an ATM menu The ATM menu

In this activity we will develop a modular program with functionality behind each of the menu

options shown above. The system requirements are as follows:

- When the program is started the ATM menu is displayed and the user is prompted to

choose an option

- The option is read and validated by the system (a valid option is an integer between 0

and 3 inclusive)

- If the user chooses Option 1 the system will display the account balance

The balance is stored in a variable called balance which is initialised to €0.00 at the

start of every run

 If the user chooses Option 2 the system will prompt the user to enter an amount to lodge.

The amount entered will be added to balance whose value will be updated accordingly.

 If the user chooses Option 3 the system will prompt the user to enter an amount to

withdraw. The amount entered will be subtracted to balance whose value will be updated

accordingly

The system constraints are:

 Lodgements can only be made in multiples of €10

 Withdrawals are permitted only if the amount requested does not exceed the value stored

in balance

Python Programming Page 215

The main program used to drive the ATM menu system is shown here.

The initial task in this activity is to study the above code

carefully. Use the prompts below to help you build up an

understanding of the purpose of the code and how it works

a) Identify the names and purpose of the variables

b) Identify the names of the built-in functions used and the names of the user-defined

functions required to make this program work.

(continued .…)

Python Programming Page 216

c) Explain how the if statement works (lines 7-14)

d) Explain how the while loop guard works (line 6)

e) Explain why lines 4 and 5 are repeated on lines16 and 17

f) Predict what would happen if you keyed the code in and ran it

g) Key in the program and run it. What do you observe?

Python Programming Page 217

By this point it should be evident that the main program does not work because it does not

include definitions for the functions displayMenu, getChoice, processLodgement and

processWithdrawal. Our next step in this activity is to define these four functions.

One common technique used by programmers in situations like this is to write empty

function definitions known as a stubs. Stubs are placeholder functions used as part of the

program construction process so that programs can be run without any syntax errors.

Stubs for the four ‘missing’ functions are shown here.

h) Insert the stubs into the main program. (Remember: a function definition must appear

in a program at a point before the code that calls it.). Once the stubs have been

inserted describe and explain the program behaviour.

i) Explain the use of pass7 and return in the above code. Why do you think the stub

getChoice returns zero?

7 pass is a Python keyword. When it is executed, nothing happens. It is useful as a placeholder when a

statement is required syntactically, but no code needs to be executed.

https://docs.python.org/3/reference/simple_stmts.html#pass

Python Programming Page 218

The next stage of this activity is to incorporate full implementation

of the four functions (shown below) into the main program. Before

you do this you should first study each function carefully and use

the space provided to explain how each one works

Key in the four functions and make sure they run without any syntax errors.

Experiment by re-arranging the functions into different orders. After every change make sure

to test your program to make sure it still works properly

Test the system with some ‘normal’ use cases e.g. use the system to lodge €100 or

withdraw €30. What’s the balance before and after the transaction?

Python Programming Page 219

Experiment!

Investigate what happens when you attempt the following ….

a) try to lodge €35?

b) try to withdraw a negative amount?

c) try to withdraw an amount greater than the balance?

d) try to withdraw an amount equal to the balance?

Evaluate.

Identify any features of the solution that you like/dislike.

Python Programming Page 220

Suggested Activities (Modifications)

1. Modify the program so that it the maximum amount that can be withdrawn in any one

transaction is €200.

2. Modify the program so that the account balance can be read from and stored in a file.

The following hints are designed to help

a) You will need to create the initial file -

call it atm.txt – to store the balance.

Insert the value 0.0 the very first time

it is created Initially

b) The function shown below reads the value from the file into the variable balance.

c) The function shown below writes the contents of the variable balance to the file.

Notice the use of the with keyword as an alternative way to reference file objects.

The use of with is considered good practice.

d) Finally, you will need to insert the calls to these functions at the start and end of the

main program block presented earlier.

3. Design and integrate a Personal Identification Number (PIN) security layer into the

system. Feel free to come up with your own requirements but here’s some ideas to get

you started.

 The customer is given three attempts to enter the correct PIN

 A valid PIN is any four-digit number (i.e. a value between 0000 and 9999)

 The initial PIN to enter the system should be read from a file (e.g. atm.txt)

 The menu system should be extended to allow the user to change the PIN

Python Programming Page 221

4. Global variables are variables that are visible to blocks of code outside the scope of

where they are declared. In this example, the variable balance is global. This means

that the value of balance is visible inside every function which uses the global

keyword.

The use of global variables is generally considered to be poor programming practice.

Remove the need for the global keyword in the system.

Hint: Consider how balance could be passed as an argument into the functions that

need it, and returned out of functions that change it.

5. The system requires the user to enter the lodgement/withdrawal amounts. What are the

drawbacks of this? Can you think of any alternative ways these amounts could be

captured by the system? Design a solution.

How has this specific activity extended your thinking in relation

to the role of functions in designing a user interface?

Python Programming Page 222

Further Activities

Implement additional functionality to support two accounts – a

deposit/savings account and a checking/current account. Some ideas

to get you started are listed below.

 Customers should be able to get the balance of either account separately

 Lodgements can only be made into the deposit account

 Withdrawals can only be made from the current account

 Transfers are only permitted from deposit to current account

Discuss the use of functions to teach concepts such as

abstraction, decomposition and evaluation (CT concepts)

Python Programming Page 223

Based on what you have learned by completing this activity, use the

code below as an inspiration to develop another activity suitable for

use in the LCCS classroom.

The prompts here may be used as a guide:

 Start off by listing the requirement and any constraints.

 What prior knowledge and skills are required to meet the requirements?

 What initial scaffolding would you provide to students?

 What areas would you ask students to investigate?

 How might students modify any code you provide?

 What extended activities based on the code would ask students to complete?

 With what reflection tasks should students be presented?

Python Programming Page 224

BREAKOUT 6.2: Summing Numbers

Earlier in this chapter we presented a function sumOfN to calculate and return the sum of the

first 𝑛 non-negative integers. The function worked by maintaining a running total as it iterated

over every number up to and including 𝑛. The solution is considered relatively expensive

because it requires 𝑛 iterations (and 𝑛 computations) for 𝑛 numbers.

As a young schoolboy, the German mathematician Carl Friedrich Gauss (1777-1855) is

reputed to have devised a much simpler and more elegant solution that cost just one simple

calculation and did not require the use of iteration. The formula is developed as follows8:

We let 𝑆1 be the sum of the integers from 1 up to n:

𝑆1 = 1 + 2 + 3 + … +(𝑛 − 2) +(𝑛 − 1) +𝑛

We let 𝑆2 be the sum of the integers from n down to 1

𝑆2 = 𝑛 + (𝑛 − 1) + (𝑛 − 2) + … +3 +2 +1

Since both sums are the same we can safely say 𝑆1 = 𝑆2 = 𝑆

The two sums can be added as follows to give 2𝑆

𝑆 = 1 + 2 + 3 + … +(𝑛 − 2) +(𝑛 − 1) +𝑛

𝑆 = 𝑛 + (𝑛 − 1) + (𝑛 − 2) + … +3 +2 +1

2𝑆 = (𝑛 + 1) + (𝑛 + 1) + (𝑛 + 1) + … +(𝑛 + 1) +(𝑛 + 1) +(𝑛 + 1)

We have (𝑛 + 1) repeated 𝑛 times i.e. 𝑛 × (𝑛 + 1)

The required sum 𝑆 is arrived at by dividing both sides by 2 to give Gauss’s formula:

𝑺 =
𝒏 × (𝒏 + 𝟏)

𝟐

8 See https://brilliant.org/wiki/sum-of-n-n2-or-n3/

https://brilliant.org/wiki/sum-of-n-n2-or-n3/

Python Programming Page 225

Suggested Activities.9

1. A Python implementation of Gauss’s

formula is shown here to the right.

Write two additional functions to find the

sum of the squares and the sum of the

cubes of the first 𝑛 non-negative

integers using the respective formulae

shown below

a) Explain the subtle difference between finding the sum of the first 𝑛 even numbers and

finding the sum of the all even numbers less than 𝑛. Use the two listings below to help.

b) Exploit the pattern 2 + 4 + 6 + 8 + ⋯ = 2(1 + 2 + 3 + 4 + ⋯) to devise a formula to solve

the above problem. Implement your solution.

c) Define a function that sums all the positive integers from 𝑥 to 𝑦 where both 𝑥 and 𝑦 are

two numbers entered by the end-user. For example, if the end-user entered 8 and 13 the

program would compute and display the result of 8 + 9 + 10 + 11 + 12 + 13.

(Hint: 𝑆𝑢𝑚 𝑜𝑓 8 𝑡𝑜 13 = 𝑆𝑢𝑚 𝑜𝑓 1 𝑡𝑜 13 𝑚𝑖𝑛𝑢𝑠 𝑡ℎ𝑒 𝑠𝑢𝑚 𝑜𝑓 1 𝑡𝑜 7)

9 Refer to https://betterexplained.com/articles/techniques-for-adding-the-numbers-1-to-100/ for interesting

background reading

https://betterexplained.com/articles/techniques-for-adding-the-numbers-1-to-100/

Python Programming Page 226

Reflect. How could the derivation of Gauss’s formula and/or the

illustrations shown below be used explain core computational thinking

concepts in the LCCS classroom?

Python Programming Page 227

Further Activities

1. Write a program to sum the first n odd numbers

(Write another program to sum all the odd numbers up to n).

2. The reciprocal of a number 𝑥 is denoted by
1

𝑥
 e.g.

1

5
 is the reciprocal of 5.

Define a function to sum the reciprocal of the first 10 positive integers i.e.

1

1
+

1

2
+

1

3
+

1

4
+

1

5
+

1

6
+

1

7
+

1

8
+

1

9
+

1

10

3. Implement a function that finds an approximation for 𝜋 using the formula provided

𝜋 = 4 −
4

3
+

4

5
−

4

7
+

4

9
−

4

11
+ ⋯

4. Write a program that uses the formula shown to estimate a value for Euler’s constant, 𝑒

Explain how recursion could be used to complete any of the tasks

covered in this section

Python Programming Page 228

BREAKOUT 6.3: Turtle Graphics and Functions

Part I

Consider the short program below to draw a square of 100 units

Suggested Activities

1. Key in the code and run with it. Investigate what happens when you change the values

(i.e. 100 and 90). What conclusions about the meanings of these values can you make?

2. Implement a function called drawSquare and

modify the above code to use it.

3. Modify drawSquare so that it accepts the

square’s dimension as a parameter

4. The implementation of drawSquare shown here exploits the fact that a square is a

special kind of rectangle (abstraction). Implement drawRectangle.

5. Design and implement a function to draw a n-sided polygon. (Hint: study the three

function definitions shown carefully – look for patterns and generalise.

Python Programming Page 229

Part II

Study the two listings below carefully and answer the questions that follow.

Listing A Listing B

Compare and contrast the two listings. Which do you think is

better and why? Describe any limitations of your preferred

listing and explain how these might be overcome.

Python Programming Page 230

Suggested Activities

1. Key in the code for Listing B, predict what it does and run it. What does the code do?

2. Modify the function drawAngle to accept

the lengths of each angle arm as shown in
the function header here.

3. Modify the function setPenPosition to

accept the (x,y) co-ordinates as shown in
the function header here.

4. Modify the implementation of drawAngle so that it accepts the co-ordinates (as well as

the angle size and arm lengths) of the position at which to place the angle.

5. Once you have the previous task complete you should evaluate the design decision to

change the definition of drawAngle.

What are the wider implications to the rest of a program of changing a function header?

6. Investigate whether Python would allow the following two function definitions in the same

program. Would this be a useful feature?

Python Programming Page 231

Reflection.

What were your main thoughts as you engaged with this activity?

Describe any connections this activity allowed you to make between

computational thinking and functions.

Python Programming Page 232

Further Activities

Code refactoring is the process of restructuring computer code without changing its existing

functionality. Code is usually refactored in order to improve readability and maintainability.

The functions defined in the code below each draw a corresponding shape shown to the

right. Each function relies on the turtle being oriented to the right (i.e. in an eastward

direction) in order to work properly. This is achieved with the call setheading(0).

1. The task here is to look for a common pattern in the shape (or code) and exploit this

pattern to refactor the code without changing any functionality.

Hint: You will need to write a separate function that just draws the part of the shape that is

common to all four shapes.

Python Programming Page 233

2. Read the code below carefully and key it in.

a) Write the necessary code to call the functions defined so that each of the three shapes

shown to the right are drawn - all lines are 50 units in length.

b) Identify any repeating patterns in the above shapes and exploit this pattern to refactor

the code without changing any functionality.

c) Define three functions draw2, draw3 and draw9 in terms of the functions defined in the

above code to display the digits as illustrated below.

draw2 draw3 draw9

Python Programming Page 234

BREAKOUT 6.4: Using check digits to verify codes

A check digit a number whose purpose is to trap

potential errors made by humans when manually

entering a code (e.g. barcodes, ISBNs) to a

system. It consists of a single digit – usually the

rightmost digit - whose value is computed from

the other digits in the number. The check digit of

the barcode shown here to the right is 4

EAN-8 format barcode

Barcode check digit verification algorithms generally work by calculating a total using the

formula shown below. If the total is evenly divisible by 10 then the check digit is deemed to

be valid.

𝑡𝑜𝑡𝑎𝑙 = (𝑠𝑢𝑚 𝑜𝑓 𝑎𝑙𝑙 𝑡ℎ𝑒 𝑑𝑖𝑔𝑖𝑡𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑒𝑣𝑒𝑛 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠) + 3 × (𝑠𝑢𝑚 𝑜𝑓 𝑎𝑙𝑙 𝑡ℎ𝑒 𝑑𝑖𝑔𝑖𝑡𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑜𝑑𝑑 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠)

The digits are read from right to left – so the rightmost digit is always taken to be the first

even-positioned digit. The following table shows the positions and the corresponding digit for

the barcode shown at the top of the page.

Digit Positon 0 1 2 3 4 5 6 7

Digit 4 5 2 3 3 8 5 6

The check digit of this barcode number can be verified as follows:

1. Add all the digits in the even-numbered

positions (zeroth, second, fourth etc.)
4 + 2 + 3 + 5 = 14

2. Add the digits in the odd-numbered

positions (first, third, fifth, etc.) together

and multiply by three.

3 × (5 + 3 + 8 + 6) = 3 × 22 = 66

3. Add the two sub-totals. 14 + 66 = 80

4. Take the remainder of the total divided

by 10 (modulo operation)
70%10 = 0

The remainder after dividing by ten is zero (i.e.70 ≡ 0 (𝑀𝑜𝑑 10)). Therefore, the check digit

is correct.

Python Programming Page 235

The European Article Number or EAN (aka International Article Number) is a worldwide

standard that describes the format for numbers that appear under the barcodes used to

identify retail products. Two of the most commonly used EAN standards are the eight digit

EAN-8 and thirteen digit EAN-13 – illustrated below.

Barcode using EAN-8 Barcode using EAN-13

Use the algorithm described on the previous page to verify that

both of the above barcodes are valid

Outline any programming strategies you could use to extract the

even/odd digits as part of a Python implementation of the check

digit verification algorithm?

Python Programming Page 236

Developing an algorithm to extract digit from a number

The three listings below extract the individual digits from any two- digit, three- digit and four-

digit number respectively

In all of these examples the rightmost digit is always stored in the variable d1.

The value is the remainder after dividing whatever number was entered by 10 (e.g.

83 % 10 = 3, 835 % 10 = 5 etc.).

Sample Input: 83

Output: 3 8

In the above example the leftmost digit is extracted by dividing by 10 (i.e. 83// 10 = 8). This

is stored in the variable d2.

Sample Input: 835

Output: 5 3 8

Here, the middle digit is extracted in two steps – first, divide by 10 to leave the first two digits

(i.e. 835// 10 = 83) and then remainder 10 (i.e. 83 % 10 = 3).

This is stored in the variable d2.

The leftmost digit is extracted by dividing by 100 (e.g. 835// 100 = 8). This is stored in the

variable d3. (Note that taking the remainder 10 of does not affect the value)

In the next (and final) example we examine the code to extract the individual digits of any

four-digit number - d4, d3, d2 and d1.

Sample Input: 8352

Output: 2 5 3 8

Python Programming Page 237

Let’s look at the process for extracting the second digit in from the right, d2. The sample

input is 8352 and we wish to extract the 5. The procedure is to divide by 10 – this gives 835 -

and then use remainder 10 on this to extract the final digit.

A similar procedure can be used to extract the third digit in from the right (d3) i.e. extract the

3 from 8352. This time we divide by 100 – this gives 83 - and then use remainder 10 to

extract the final digit.

Finally the leftmost digit, d4, can be extracted simply by dividing by 1000 i.e. 8352//1000 =

 8. Applying remainder 10 to this does not change the value.

Describe any patterns you recognise emerging from the three

examples above?

Devise an algorithm to extract the ith digit from any number n.

(Take the rightmost digit to be at position 0.) Implement your

solution in a Python function – header defined as follows:

Explain how the remainder (modulus) operator could be used to

ensure a randomly generated number is within a specific range

Python Programming Page 238

Suggested Activities

These activities are based on the short program below which implements an algorithm to

validate an EAN-8 barcode number

1. Key in the program and make sure it runs without any syntax errors.

2. Test the program with a range of valid and invalid EANs

3. Take a close look at the function extractDigit. What would happen if an out of range

index was passed into it?

For example what would happen if the following calls were made to the function -

extractDigit(-1, 869) or extractDigit(3, 869)?

4. Suggest ways by which any problem(s) identified in the previous question could be fixed

and discuss whether any of these solutions need to be implemented.

5. Extend the code with a function to check the validity of an EAN-13 number

6. Implement a function isValidEAN that works for both EAN-8 and EAN-13 numbers.

Hint you will need to do a range test to determine the size of the number

7. Modify the code so that it could work using string representation of the EAN (as opposed

to a numeric representation).

Test your program with the call: print(isValidEAN8("53912343"))

8. Design (and implement) a program to generate a check digit for an EAN-13 barcode (i.e.

given the first 12 digits compute the 13th)

9. Write a recursive function to sum the individual digits of a number

Python Programming Page 239

Reflection.

Describe your experience of engaging with the tasks in this activity.

Consider the following prompts for a learner’s perspective

When I saw a problem for the first time what was my thinking?

What computational thinking skills, if any, did I employ?

What worked well for me? What didn’t work so well?

Were there any limitations to any of my solutions?

What programming skills did I improve/learn?

Looking back at the tasks in this activity (as a teacher) what

programming constructs would it be necessary for students to

understand before engaging in a similar task.

Python Programming Page 240

Further Activities (ISBNs and Credit Cards)

1. An International Standard Book Number (ISBN) is a unique number used to identify

books worldwide. Before 2007 ISBNs were made up of 10 digits and this was extended

to 13 digits from 1 January 2007. The former standard is known as ISBN-10 and the

latter is known as ISBN-13.

Use the information provided below to derive and implement an

algorithm to validate any ISBN-10

ISBN-10: 1-350-05711-8

𝑐ℎ𝑒𝑐𝑘𝑠𝑢𝑚 = (1 × 10) + (3 × 9) + (5 × 8) + (0 × 7) + (0 × 6) + (5 × 5) + (7 × 4) + (1 × 3) + (1 × 2) + (8 × 1)

𝑐ℎ𝑒𝑐𝑘𝑠𝑢𝑚 % 11 must be zero

2. Just like barcodes and ISBNs, credit card numbers contain several pieces of information

for performing validity tests. For example, Visa card numbers are always 16 digits long

and always begin with 4. A valid Visa card number also passes a digit-sum test known

as the Luhn checksum algorithm. Luhn's algorithm states that if you sum the digits of the

number in a certain way, the total sum must be a multiple of 10 for a valid Visa number.

Systems that accept credit cards perform a Luhn test before contacting the credit card

company for final verification. This lets the company weed out many fake or incorrect credit

card numbers.

The algorithm for summing the digits is the following. For digits at even indexes (the 0th digit,

2nd digit, etc.), simply add that digit to the cumulative sum. For digits at odd indexes (index

1, 3, etc.), double the digit's value, then if that doubled value is more than 10, add its digits

together to make a number that is smaller than 10, then add this result into the sum.

Use the information provided below to derive and implement Luhn’s

algorithm to validate any credit card

Credit Card Number: 4408 0412 3456 7893

𝑐ℎ𝑒𝑐𝑘𝑠𝑢𝑚 = (8) + 4 + (0) + 8 + (0) + 4 + (2) + 2 + (6) + 4 + (1 + 0) + 6 + (1 + 4) + 8 + (1 + 8) + 3

𝑐ℎ𝑒𝑐𝑘𝑠𝑢𝑚 % 10 must be zero

Python Programming Page 241

NOTES

Python Programming Page 242

Section 7

Dictionaries

Python Programming Page 243

Introduction

In plain English a dictionary is something that is used to find the meaning or translation of a

word. In Python a dictionary is a data structure which can be used to store values that can

be looked up and retrieved using a unique identifier known as a key.

Python dictionaries are very similar to Python lists but, as we will soon see, there are some

important differences.

Like lists, dictionaries are useful because they provide a means by which a collection of data

can be manipulated using a single variable. Each element in a dictionary consists of two

parts – a key, which must be unique, and an associated value. These are commonly

referred to as key-value pairs (and also name-value pairs).

The graphic on the left below depicts the mapping between keys and their associated

values. This can be contrasted with the graphic on the right which depicts a Python list of

length N.

A dictionary with N elements. Each element

is referenced by a unique key which is

usually a string or an integer

A list with N elements. Each element is

referenced by a zero based positional

offset known as an index

Recall from Chapter 4 that lists are ordered data structures. This means that Python

maintains the relative ordering of every element in a list. Because the list index is a

positional offset position, operations such as slicing and concatenation make sense for lists.

Dictionaries on the other hand are unordered data structures. Python does not maintain the

order of dictionary elements. This is because elements are retrieved using a key (as

opposed to an index). There is no guarantee that dictionary elements are maintained in the

Python Programming Page 244

same order as they were created. Consequently, operations that depend on order such as

slicing and concatenation are not supported for dictionaries.

KEY POINT: A dictionary can be thought of as an unordered list which uses a

key to retrieve elements instead of an index.

Dictionaries are useful for storing a list of values when the values can be identified by some

string or integer (i.e. the key). Keys must be unique and can be of any immutable datatype

(e.g. string, integer) – and values can be of any datatype (simple or compound).

Dictionary Definitions – some examples

The examples below are all given in the form of assignment statements in which a dictionary

appears to the right of the assignment operator and the variable to which the dictionary is

being assigned appears on the left.

Example 1

In this first example, we define a dictionary called glossary. The dictionary shown below

contains four elements and each element is made up of two parts – a key and a value –

delimited by a colon. The name of the first element in this dictionary is Analyse and the

value of this element is to study or examine something in detail.

In this dictionary each individual word is the key. The key can be used to lookup the value

- in this case the meaning of the word.

Note that in each of the examples in this section the dictionary data is enclosed by curly

braces. The opening brace, ({), tells Python that this is the start of a dictionary definition and

the closing brace, (}), signals the end of the dictionary definition.

KEY POINT: The elements of a dictionary are enclosed by curly braces; each

element in a dictionary is a key-value pair; the key and the value must be

separated by a colon.

Python Programming Page 245

Example 2

In this example the dictionary comprises six

elements. Note that dictionary elements are

separated by commas and also that a comma is

allowed at the end of the last element.

The individual elements provide a mapping from a

unique country name (e.g. Ireland) to a capital city

(e.g. Dublin).

The above dictionary could be used
to look up a capital city for a given

country.

As was the case with the last example the datatype of the names and values are all strings

and the elements are all enclosed in curly braces.

KEY POINT: No two dictionary elements can have the same key i.e. the keys

must be unique. Values however, can be duplicated.

Example3

Here, the dictionary numbers can be used

to lookup the Irish word for each of the

numbers from one to ten.

In this example, the datatype of the keys

are all integers and the datatype of the

corresponding values are all string.

KEY POINT: The datatype of a dictionary key must be immutable (e.g. string,

integer) but values can be of any datatype (including lists and other

dictionaries).

Python Programming Page 246

Example 4

This example defines a dictionary called

capacity which stores the maximum

number of people that seven well known

sports stadia can safely accommodate.

Note in this case the datatype of the keys is

string and the datatype of the values is

integer.

This dictionary could be used to look up the

capacity of a given stadium.

Example 5

In examples 1-4 the keys and values store the same kind of information i.e.

- in example 1 the key is a word and the lookup value is the meaning of that word

- in example 2 the key is a country and the values is its capital

- in example 3 the key is a number and the value is its Irish translation

- in example 4 the key is the name of a stadium and the value is its capacity

It is quite common for keys to be unrelated to one another. Notice how in the following

examples the keys all refer to different things and also the mixture of datatypes in the values.

This dictionary is used to hold student details.

Note the mixture of datatypes in the values.

nctBooking is a dictionary used to

store the booking details for a National

Car Test (NCT)

Dictionaries like these two are useful for representing structured data i.e. data that is

organised in a tabular format in such a manner that values can be identified by unique

names (e.g. field names in a database, column headers in a spreadsheet/csv file)

It is worth noting that dictionaries are referred to as records/structures in other programming

languages.

Python Programming Page 247

Creating Dictionaries - syntax

Python supports several different syntaxes for creating dictionaries – so far we have looked

at just one i.e. enclosed in curly braces with key-value pairs delimited by colons and

separated by commas. The general form of this syntax is shown below.

Note the use of:

- curly braces to enclose the dictionary elements

- the colon to delimit the key-value pairs and

- the comma to separate elements

Another way to create dictionaries is to use the built-in function, dict. There are several

variations on the use of dict but for the sake of brevity we will look at just two.

In this first variation (shown below) the dict function is used to create a dictionary called

abbr1 with three key-value pairs. The general form of this syntax is shown to the right. Note

the similarity to the syntax of the earlier examples – basically, this syntax just passes the

entire dictionary (curly braces and all) as an argument into the dict function.

In this next example three keyword arguments are passed into dict. Each argument is

assigned an associated value. This syntax requires that each key is a valid Python identifier

i.e. it cannot begin with a digit, must be made up of alphanumeric characters or underscore

etc. Note the absence of curly braces in this syntax.

Python Programming Page 248

When created in this way, the datatype of the dictionary keys is always a string.

The dictionaries resulting from both examples, abbr1 and abbr2 are identical i.e.

Empty Dictionaries

In practice data is usually not hardcoded into programs as illustrated in the examples used

thus far. Rather, data typically enters a running program from some external source such as

the end-user, file(s) or a database. In such cases it can be useful to start off with an empty

dictionary. The three statements below all define an empty dictionary called d.

As a program runs, data can be added to, or removed from the dictionary in accordance with

the needs of the underlying computational model.

What have you learned about dictionaries from the preceding

examples?

What one question about dictionaries would you like to have

answered right now?

Define a dictionary of your choice to contain five elements.

Python Programming Page 249

Indexing Dictionaries

Recall from earlier that indexing is a technique used to access/retrieve the elements of

strings (section 3) and lists (section 4). Dictionary values can also be indexed but, unlike

strings and lists which both use a zero based integer as a positional offset to access

elements, dictionaries use the key as the index.

Let’s say we have a dictionary called d defined with key-value pairs depicted as shown here.

The code below displays the three values stored in the above dictionary:

Oh My God!
Laugh out Loud
In My Humble Opinion

Dictionary values are accessed by
using the keys as the index

The output displayed by the code

The general syntax to access elements of a dictionary is:

where, dict-name is the name of the dictionary and key is the lookup value to use in

order to retrieve the required element. Note that the key may be a string or an integer.

KEY POINT: Dictionary values are accessed by using their key as the index

(i.e. in square brackets)

The example below demonstrates that dictionary values can be accessed in any order. The

output of each print statement is shown to the right.

In My Humble Opinion
Oh My God!
Laugh out Loud

Python Programming Page 250

SYNTAX CHECK #1:

Attempts to access a dictionary using a key that does not exist result in

Python displaying a KeyError

This error is demonstrated by the code

shown here to the right.

The last line (highlighted in red) causes

the Python interpreter to display the

KeyError shown below.

The problem is that Python cannot find a key entry with the name LOLL in dictionary d and

the probable cause is a typing error made by the programmer.

SYNTAX CHECK #2:

Key names are case sensitive so the listing below will result in the

same KeyError. This is illustrated below.

Explain the possible causes for a KeyError in Python.

Python Programming Page 251

Keys can be variables

It is useful to be aware that the index used to lookup a dictionary value can be stored in a

variable. Consider the code below.

Line 7 declares a variable called key and assigns the string OMG to it. Line 8 uses the

contents of key as the index to retrieve its corresponding value from the dictionary d. The

result of the lookup is assigned to the variable value. Finally, line 9 causes the contents of

value to be displayed.

SYNTAX CHECK #3:

If Python does not recognise the identifier used to lookup a dictionary it

will display a NameError.

Experiment!

Key in the code below and explain why both result in a NameError when

they are run.

Python Programming Page 252

The code below defines a dictionary called capitals and prompts the user to enter one of

the six nation countries.

If the user enters one of the country names that is stored as a key in the dictionary, the

program will display the corresponding capital city. The contents of the variable country is

used as the key to lookup the dictionary capitals.

Experiment!

What happens when the user enters the name of a country that is not in

the dictionary countries? Explain.

Experiment!

What is the purpose of the variable i in the code below?

Change the for loop to for i in range(10): and explain what happens

Python Programming Page 253

Operations to access values

Indexing is not the only technique that can be used to retrieve dictionary values. In fact,

Python dictionaries support a number of operations that can be used for this purpose - two of

these are get and pop

get(key)

This call returns the value in the dictionary that corresponds to key. If the key

does not exist the call returns None (unless a default value has been

specified for the key). Therefore, this command never results in a KeyError.

pop(key)

This call returns the value in the dictionary that corresponds to key. If the

value is found the element is removed from the dictionary. Otherwise the call

results in a KeyError.

The use of get is highlighted in the code listing shown here.

In the first sample run the user

enters Maths and the value H4 is

returned and assigned to

result.

In the second sample run, the

call to get returns None as the

key entered by the user (i.e. sdf)

is not found.

Sample Run 1

Sample Run 2

Notice from both sample runs that the contents of the dictionary grades remain unchanged

after the call to get.

Python Programming Page 254

This can be contrasted with the use of pop which removes the element from the dictionary

as shown here.

When the key is found its value is returned and the element is deleted from the dictionary.

When the key is not found Python raises a KeyError

One way of avoiding this type of error is to use the in keyword to test the key for

membership before attempting the call to pop. This is exemplified below.

This time when a key which does not exist is entered, a meaningful message is displayed

and the dictionary is left unaltered.

Python Programming Page 255

Adding, Changing, and Deleting Dictionary Elements

The technique of indexing can be used to add, change and delete elements. These

operations are now discussed in turn

Adding new elements to a dictionary

New elements are added to a dictionary

when a key that does not already exist

is used as the index in an assignment

statement.

Line 7 in the code shown adds a new

(fourth) element to the dictionary, d.

The output displayed is:

The general syntax for adding elements to a dictionary is:

where, dict-name is the name of the dictionary and key and value specify the key-

value pair of the new element to add.

Get Coding!

Add the following key-value pairs to the dictionary, d defined above

"MUA" : "Make Up Artist"

"SWAG" : "Stuff We All Get"

"WTP" : "What's the plan"

Experiment!

What happens when you try and add a new value to a dictionary using a key

that already exists?

Python Programming Page 256

Building up a simple empty dictionary

Imagine we were asked to write a simple program for Twitter that would build up a dictionary

to store information entered about a person/user. Specifically, let’s say we were asked to

build up, and populate a dictionary with the following structure:

The keys (i.e. handle, name, tweets etc.) are shown on the left hand side and the

corresponding values on the right will be entered by the end-user when the following

program is run.

Lines 6, 8, 10, 12, and 14 all assign whatever value the user enters for the specified key into

the dictionary.

Note that decisions about what information a system should sore are usually made (by the

system analysts and designers) before the programmer(s) begin coding. In this case, it was

decided to store the person’s handle and name as well as the number of tweets they sent,

the number of people they are following and the number of followers they have.

Python Programming Page 257

The next example builds up a dictionary of student results. The results are stored as key-

value pairs made up of a subject name and a corresponding mark.

In this first version of the program the dictionary stores the student name and one result. A

sample run is shown here to the right

Notice on line 8 that the identifier subject is not enclosed in quotes. This is how the name

of the subject entered by the end-user becomes the key for this dictionary entry.

The obvious limitation of the above program is that it only works for one subject. In this next

version we use a while loop to allow multiple subjects to be entered and stored in the

dictionary.

A sample run of this code (version 2a) shows results for Irish and Maths being entered and

stored in the dictionary.

Python Programming Page 258

The next block of code, version 2b is logically equivalent to version 2a i.e. if they are given

the same input they will both produce the same output.

Notice however, the subtle difference between the while loops in the two versions.

In version 2a the break statement causes the loop to terminate. This happens whenever the

user presses return for the subject name.

In version 2b the user is prompted to enter the subject name before entering the while loop

for the first time, and then again at the end of each execution of the loop body. Whenever

the user enters an empty subject name (by pressing return) the loop guard i.e. subject! =

"" is evaluated to False and the loop terminates.

In situations such as this – when there is a choice between more than one logically

equivalent solution to the same problem – the decision as to which implementation to use

usually rests with the programmer and very often boils down to a matter of personal

programming style.

Modify the code in either of the previous two example (i.e. version 2a or 2b) so

that the dictionary stores the results of one single subject for multiple

students. A sample run of the desired program is shown below.

Python Programming Page 259

Changing dictionary values

The simplest way to change (update) dictionary values is to use the assignment statement.

Line 7 in the code below illustrates how the dictionary value for key entry LOL could be

changed from Laugh out Loud to League of Legends.

The expression on the right hand

side of the assignment operator in

line 7 is assigned as the new value

for the element in d that is

referenced by the key ‘LOL’.

The output displayed is:

Experiment!

What happens when you try to change a value using a key that does

not exist (e.g. typo error in key)?

Experiment!

Key in the code below and use the output to explain what the update

command used in lines 12 and 13 does.

Python Programming Page 260

Deleting dictionary elements

Dictionary elements can be deleted using the del keyword.

The use of del is exemplified on line 7 below which removes the entry indexed by LOL from

the dictionary.

The effect is to delete the second element, and in doing so, reduce the number of elements

in the dictionary from three to two. The output displayed is:

The general syntax to delete a dictionary element is:

where, dict-name is the name of the dictionary and key is the lookup value to use in

locating the element to delete. If the key is not found its Python raises a KeyError

If del is used on a dictionary without specifying an index, the dictionary reference is

removed from the program’s namespace. The effect of the following statement is to delete

the variable represented by dict-name from the program.

Finally, the clear command deletes all elements from a dictionary. The resulting dictionary

is left empty.

Get Coding!

Write code to remove all the elements from the dictionary, d defined above

Python Programming Page 261

Experiment!

What is the relationship between d1 and d2 at the end of this program?

Explain what the clear command used on line 10 does.

Experiment!

What is the relationship between d1 and d2 at the end of this program?

Explain what the del command used in line 11 does.

Python Programming Page 262

Experiment!

Explain what happens when you run the following code.

Experiment!

Explain what happens when you run the following code.

Python Programming Page 263

Programming Exercises

1. Study the dictionary definition shown in part b) carefully and answer the questions that

follow:

a) What is the name of the dictionary?

b) Identify the keys and values in the dictionary

Keys:

Values:

c) Suggest name for two additional key-value pairs that could be added to car

d) Provide an alternative definition for car

using the dict function by completing the

code inside the red box shown.

e) Predict what output would be generated by each of the following print statements.

(Note: some of these statements generate an error.)

(i) print(car['make'])

(ii) print(car[model])

(iii) print(car['miles'])

(iv) print(car['colour'][0])

(v) print(car['diesel'][0])

(vi) print(car['reg'][4:5])

Python Programming Page 264

f) Assume that currentYear is a variable that has been assigned the value of the

current year (e.g. currentYear = 2018). What do you think the statement

print(car['kms']/(currentYear - car['year']) would output?

g) What information does this output convey to the end user?

h) Now create a dictionary definition for car so that the print statements shown below

can run without errors. Use the space provided to record the actual output.

(i) print(car['make'])

(ii) print(car['model'])

(iii) print(car['kms'])

(iv) print(car['colour'][0])

(v) print(car['diesel'])

(vi) print(car['reg'][4:5])

(vii) currentYear = 2018

print(car['kms']/(currentYear - car['year']))

What have you learned about dictionaries by completing this

exercise?

Python Programming Page 265

2. The dictionary colours contains a mapping of five colours in English to Irish. Study the

definition carefully (ignoring the deliberate translation errors for the moment) and answer

the following questions.

a) Write an alternative definition for colours in the space provide on the right.

(Hint: use the dict function.)

b) Predict what happens when the following lines of code are added (individually)

(Hint: None of these statements generate a syntax error.)

(i) colours['yellow'] = 'buí'

(ii) colours['pink'] = 'bán agus dearg'

(iii) colours['green'] = 'glas'

(iv) colours['blu'] = 'gorm'

(v) colours.update(blue='gorm')

(vi) colours.update(green='gorm', blue='dubh')

(vii) del colours['white']

Python Programming Page 266

c) In each of the following blocks of code line 9 reads a value from the end-user and line

11 attempts to use that value as a key to lookup the dictionary, colours. The idea is

to assign the translated colour to the variable, translation.

Each block illustrates a different technique used to retrieve a value from a dictionary.

A. Indexing

B. get

C. pop

For each block (i.e. A, B and C) predict the value of translation given the inputs of white

and orange for colour (six separate runs).

 white orange

A.

B.

C.

d) Key in the code and run it to check all the predictions you made as part of this exercise.

Explain the differences between indexing, get and pop as

techniques to retrieve values from a dictionary.

Python Programming Page 267

3. Write a program that defines a dictionary called book. The keys should be isbn, title

and author. You should make up your own values.

Now add a fourth key-value pair to your dictionary.

4. The code below prompts the end user to enter a month (month_name) and then calls a

function to return the number of days in that month to the variable numDays which is

then displayed.

Define a dictionary called days so that the following implementation of daysInMonth can

be used instead of the one shown above. The two programs will be logically equivalent.

Which of the two implementations do you think is better and why?

Python Programming Page 268

Iterating over dictionaries

Occasionally the need arises to write code to perform some processing on each individual

dictionary element. Such situations can be dealt with by traversing or iterating over the

dictionary. A simple example would be to display every key and/or value in a separate

formatted message. Let’s say we have a dictionary defined as follows (both definitions are

equivalent):

Python supports a small number of commands which can be used in conjunction with a for

loop to iterate over the elements of a dictionary. These are summarised in the table below.

keys() This call returns a list of all the keys in a dictionary

values() This call returns a list of all the values in a dictionary

items() This call returns a list of all the key-value pairs in a dictionary

[Technically keys(), values() and items() actually return what Python calls a view object. For

the purpose of LCCS it is fair to think of view objects and lists as equivalent.]

The use of keys() is illustrated below – the output is sown on the right. Note that, on each

iteration of the loop, the variable k takes on (i.e. is assigned) the value of the next key in the

list of keys returned by the call to results.keys()

The pattern is so common that the use of keys()

can be ommited entirely. Both loops are logically

equivalent.

Python Programming Page 269

The built-in function sorted can be used to sort the keys – again the output is displayed on

the right:

Since dictionaries are unordered the use of sorted

can have no effect on the internal ordering of the

dictionary elements.

The following code exemplifies the use of values() to iterate over the individual values held

in the results dictionary. This time the variable v takes on (i.e. is assigned) the next value

in the list of values returned by the call to results.values()

The code to the right shows how to

calculate the mean value by:

 adding up all the values

 storing their sum in total and

 dividing by the number of values

(note the use of the len built in

function.

Code to calculate the mean of a set of values.
The output generated is:

In typical Python fashion there’s usually simpler solution! In this case, could have achieved

the same output by importing and using the mean function as follows:

Python Programming Page 270

Finally, the use of items to iterate over and display the keys and values in the results

dictionary is illustrated in the code below:

Notice that there are two variables – k and v – in the for loop. The items function actually

returns a list of pairs known as tuples10. There is a one-to-one correspondence between the

tuples and the key-value pairs in the dictionary. On each iteration of the for loop the

variable k takes on the first element of the tuple and the variable v takes on the second.

Once again we can use the sorted function to sort the list of items. The following code

shows how the dictionary can be sorted on its keys.

Finally, the code to sort the dictionary by values is shown below. This code is shown for

completeness only and an explanation is beyond the scope of this manual.

10 A tuple is another Python datatype. Tuples behave very like lists except that their elements cannot be

changed i.e. they are immutable sequences. For more information on tuples see the official Python reference

at https://docs.python.org/3.6/library/stdtypes.html#tuple

https://docs.python.org/3.6/library/stdtypes.html#tuple

Python Programming Page 271

Dictionaries and Lists.

By this stage it should be evident that dictionaries and lists are conceptually very similar data

structures. The main similarities are:

- Both are compound datatypes. This means that they can be used to store (and

retrieve) multiple values using a single variable. (Compound datatypes can be contrasted

with simple datatypes such as, integer, float and Boolean. Variables of these simple

types can only store a single value at any one time.

- Both are mutable meaning that they can grow and shrink dynamically as new elements

are added and old elements are deleted.

- Both support indexing to access elements. However, the semantics of how exactly lists

and dictionaries use indexing is perhaps the greatest distinguishing feature between the

two data structures. This semantics is described as follows.

Lists are indexed using a zero-based positional offset. Dictionaries are indexed using a

key. The datatype of a list index must be integer whereas, with dictionaries the datatype of

the index must match the datatype of the key in the dictionary.

KEY POINT: Dictionary values are retrieved using a key (and not an offset

position as used by lists).

Another significant difference between lists and dictionaries is that lists are ordered

collections whereas dictionaries are not. Dictionary values are mapped by a key and

consequently can exist anywhere in the dictionary. List values, on the other hand exists at a

fixed position defined by its index.

The main implication of this is that certain list operations that depend on ordering (e.g.

slicing, concatenation, append, insert and remove) have no meaning for dictionaries.

Errors which we associate with lists resulting from using an out of range index (i.e.

IndexError) also have no meaning for dictionaries (they have their own types of errors).

Python Programming Page 272

A word on datatypes and usage notes

Lists and dictionaries are among the most powerful data structures offered by Python and

the main reason for this lies in their flexibility – especially when it comes to the wide range

and type of values that they can be used to store. The values stored in lists and dictionaries

can be of any datatype – there are effectively no restrictions.

KEY POINT: There are virtually no limitations to what can be stored in lists

and dictionaries.

Before exploring this point in any more detail it is looking at the following graphic which

classifies Python datatypes into two broad groups – simple and compound (aka composite).

Note that Python contains many more datatype than those illustrated and also that the

classification is for illustrative purposes only11. A simple datatype can be thought of as

atomic in the sense that values cannot be sub-divided into further sub-types, whereas a

compound datatype can contain values which themselves can be either simple or

compound.

In terms of the types of values that lists and dictionaries can store, we have a very broad

spectrum. At one end of this spectrum values can be uniform and simple, while at the other

end at the other end it is possible for elements to be of different datatypes and also

compound.

11 Python represents everything as objects so, strictly speaking, it has no simple datatypes.

Python Programming Page 273

BREAKOUT ACTIVITIES (Dictionaries)

BREAKOUT 7.1: Frequency Counters

1. Key in the following code and run it a number of times before attempting the questions

and activities that follow:

a) Describe what the program does.

b) Insert the line print(char) between lines 3 and 4 (indented) and run the program

again. Use your observations to state the purpose of char.

c) What type of data structure is chars?

d) What information do the key-value pairs hold in chars?

The chars keys are:

The chars values are:

Python Programming Page 274

e) Replace lines 4-7 of the original program with the following single line of code.

Make sure it is indented. Run the program again and use the space below to note

any changes in the way it behaves.

a) Browse to the official reference for the get dictionary operation and describe what

it does in the context of the previous question.

https://docs.python.org/3.6/library/stdtypes.html#mapping-types-dict

g) Modify the program so that it only maintains a count of each vowel in the input

sentence. A sample run is shown below.

Hint: As each character is being processed check whether it is a vowel or not; if

the character is a vowel add it to the dictionary and update the counter.

h) Modify the program so that it maintains total count of vowels and consonants.

Hint: The dictionary needs only two keys – vowels and consonants.

A sample run would look like this:

i) Use the structure and patterns contained in the original program to develop a

program that counts the number of occurrences of words in a piece of text. A

sample run of the desired program is shown below.

https://docs.python.org/3.6/library/stdtypes.html#mapping-types-dict

Python Programming Page 275

j) Add the following four lines of code to the end of the original program (no

indentation) and run it. Use the space provided below to describe what the code

does.

b) Experiment! What happens if there are more than one most frequently occurring

letters? How might the code be altered to display all the most frequently occurring

letters?

k) The code below shows a logically equivalent solution to that shown in part j)

above. Which solution do you prefer and why? How might the code be altered to

overcome the limitation highlighted in the last question?

Python Programming Page 276

2. The short program prompts the end-use to enter a sentence and then displays the

frequency count of every word in the sentence. A sample run of the program yields the

following:

Key the program in and run it until you are satisfied you understand what it does.

Now attempt the following. (The knowledge gained from completing part 1 of this exercise

should be helpful)

a) Predict the output of the above program for the following sentences

Have a very merry Christmas and a very very merry New Year

Expected Output:

happy birthday dear Mary happy birthday to you

Expected Output:

Ho ho ho!

Expected Output:

b) Describe the influence of case and punctuation on the way the program works.

Python Programming Page 277

c) Suggest ways by which the limitations caused by case and punctuation marks in

the program could be overcome.

d) Design and implement a solution to your suggestion from the previous question.

e) Replace lines 6-9 with a single statement that is logically equivalent i.e. each

word encountered (i.e. the dictionary value) has one added to its frequency

counter if the word already exists in the dictionary; otherwise the word is added

to the dictionary with an initial frequency count set to 1.

f) Modify the program so that it performs the same word frequency analysis on text

read from a .txt file (as opposed to a single sentence typed in by the user).

g) Change this program so that it ignores words of length greater than 3.

h) Use the program to calculate the average word length in the entire text.

i) Suggest further activities that could be based on this example.

Python Programming Page 278

3. We saw in chapter 5 (breakout activity 5.1) how the program shown here could be used

to display a bar chart with the ten most frequently occurring words from a piece of text

contained in a text file called book.txt.

The task here is to provide an alternative implementation of the above program that

incorporates the use of dictionaries.

Python Programming Page 279

NOTES:

Python Programming Page 280

Appendices

Python Programming Page 281

Python Keywords

False break else if not while

None class except import for with

True continue finally in pass yield

and def for is raise

as del from lambda return

assert elif global nonlocal try

Python 3.6.2 keywords

Python Built-in Functions

See https://docs.python.org/3/library/functions.html

abs() dict() help() min() setattr()

all() dir() hex() next() slice()

any() divmod() id() object() sorted()

ascii() enumerate() input() oct() staticmethod()

bin() eval() int() open() str()

bool() exec() isinstance() ord() sum()

bytearray() filter() issubclass() pow() super()

bytes() float() iter() print() tuple()

callable() format() len() property() type()

chr() frozenset() list() range() vars()

classmethod() getattr() locals() repr() zip()

compile() globals() map() reversed()

complex() hasattr() max() round()

delattr() hash() memoryview() set()

https://docs.python.org/3/library/functions.html

Python Programming Page 282

Python Assignment Operators

Python Arithmetic Operators

Python Relational Operators

Python Programming Page 283

Truth Tables for not, and, and or Boolean Operators

