
Perspectives on Teaching
Programming for Leaving

Certificate Computer
Science

Sue Sentance

Raspberry Pi Foundation

28th January 2019

@suesentance

Structure for this evening

• Can we all learn to program?

• Why programming can be difficult

• Pause for questions

• The myths about programming in school

• Key strategies for a teacher

• Pause for comments and questions

• PRIMM in more detail

• Summary

• Time for questions

Do you believe this?

Programming skill

People

Can’t program Can program

The Geek Gene

What’s the best way to learn to program?

Why programming can be difficult

?

1.One line of code (in some languages) can contain lots of concepts to be unpicked
and understood. This causes cognitive load

myAge = int(input(“Please tell me your age .. “))

Cognitive Load

Why programming can be difficult

?

2.We start writing programs before we are able to read any code and understand (or trace)

it. We ask students to copy code when they have no idea how it might work.

Cognitive Load
Writing first?

Why programming can be difficult

?

3.Programs don’t work first time. To cope with this you need confidence to try again,

emotional resilience, and some belief in yourself that it is worth keeping going.

Cognitive Load
Writing first?
Resilience

Why programming can be difficult

?

4.There are (at least) three levels of abstraction when programming – the problem to be

solved, how that translates into “code-speak” , and then the “coding”. Switching between

them is not always explicit.

Cognitive Load
Writing first?
Resilience
LOA

Why programming can be difficult

?

5.You need a mental model of how the computer works when your program executes. If this

is not right you can have ALL sorts of problems. Difficult for teachers to detect this.

“The computer is magic/is not logical” is one extreme of a mental model.

Cognitive Load
Writing first?
Resilience
LOA
Mental models

What about programming misconceptions?

As with any subject, students can have alternate conceptions that affect their ability to progress.

Some examples in programming*:

• A variable can store multiple values; it may store the ‘history’ of values assigned to it.

• Both then and else branches are always executed in an if statement

• A while loop’s condition is evaluated constantly. The instant it becomes false, the loop exits.

• Subprograms are executed in the order they are defined in the program text.

• … and others (41 are listed in Sorva’s chapter)

To think about:

a) How you would know a student had that misconception and

b) What would you do to help them to remediate it?

*All these taken from Juha Sorva “Misconceptions and the Beginner Programmer” in Sentance et al (2018). Computer Science Education: Perspectives on Teaching
and Learning in School.

Pause for comment and questions

We will now have a short break for you to make comments

1. Have you experienced students with these difficulties in
school?

2. Are there other key difficulties you have noticed?

3. What is the balance between “understanding” difficulties
and “confidence” difficulties in your experience

Some myths

1. Programming is only for geeks, or the child version of geek in
school

2. Programming is only for you if you are good at Maths

3. If you build the right tool to support programming it will all
be OK

Teachers are key …
Every teacher already has a toolkit of strategies

for teaching anything
What particular ones can help with programming?

We need reliable strategies!

Types of programming learners

Hobbyists

- Motivated

- Invest own time

- Own choice

School students

- One lesson a week,
for eight weeks of
the year

- Large class

- Possibly with a
teacher still on a
learning curve

- One subject
amongst many

Employees

- Paid

- Trained by experts

- Have an end goal

Teaching approaches that work for hobbyists and adult programmers may
not work for children in school. We need to develop reliable strategies

The teacher’s toolkit

• Pair programming

• Use-modify-create

• PRIMM

• Peer instruction

• Worked examples

• Parson’s problems

• …. and more ….

Pair programming

How does it work?

One driver, one navigator

Both working on same problem

Change roles every 10-15 minutes

Talk about the problem

Pairing is important

In the classroom:
Teacher models good practice

No taking of the mouse or keyboard (without permission)
Point at the screen
Talks through the code

Evidence
Shown to work in industry,
higher education and

increasingly in school
Positive impact on girls

The teacher’s toolkit

• Pair programming

• Use-modify-create

• PRIMM

• Peer instruction

• Worked examples (plus with sub-goals)

• Parson’s Problems

• …. and more ….

Use-modify-create

Use – work with an existing program

Modify – make changes to it

Create – create your own

Great approach for physical computing,
for blocks-based programming, and

robotics.

Student should be given the program not
required to copy code in.

The teacher’s toolkit

• Pair programming

• Use-modify-create

• PRIMM

• Peer instruction

• Worked examples (plus with sub-goals)

• Parson’s Problems

• …. and more ….

The power of “Predict”

Look at this Python (turtle) code

Take a piece of paper

Draw the output

Normally (not in a webinar!) you
would discuss your answers with
somebody else.

Why might that be useful?

Check your answer with the program
being executed.

What is different about your answer?

PRIMM

PRIMM is a way of structuring programming lessons that focuses on:

• Reading code before you write code

• Working collaboratively to talk about programs

• Reducing cognitive load by unpacking and understanding what
program code is doing

• Using existing starter programs that the learner is not responsible
for (if they don’t work!).

• Gradually taking ownership of programs when ready

“ It was the fact that they were talking and bouncing ideas off each other made it enjoyable and different.”

The PRIMM approach

• Predict – given a working program, talk about it in pairs or groups.
What do you think it will do?

• Run – run it and test your prediction

• Investigate – get into the nitty gritty. What does each line of code
mean? Lots of activities to try here: trace, annotate, explain, talk
about, identify parts, etc….

• Modify – edit the program to make it do different things

• Make – design a new program that uses the same nitty gritty but
that solves a new problem

More on PRIMM later

The teacher’s toolkit

• Pair programming

• Use-modify-create

• PRIMM

• Peer instruction

• Worked examples (plus with sub-goals)

• Parson’s Problems

• …. and more ….

Another activity

Look at this code

Choose A, B, C or D

Then using this approach you
should then talk in a group
about your answer! And then
vote again in a group.

Only then will the teacher
discuss the answer This is called Peer Instruction

Peer instruction
Well-evidenced pedagogical strategy

Combination of:

- Flipped learning

- Collaborative working

- Well-chosen MCQs

For more information see

http://peerinstruction4cs.org

Process

- Step 0: Study topic before session

- Step 1: MCQ question presented to class

- Step 2: Individually decide on answer

- Step 3: All vote

- Step 4: Discuss answer as group

- Step 5: Group decides on answer

- Step 6: All groups vote

- Step 7: Discuss as class

Most effective where
there are close
distractors and

known
misconceptions

http://peerinstruction4cs.org/

The teacher’s toolkit

• Pair programming

• Use-modify-create

• PRIMM

• Peer instruction

• Worked examples (plus with sub-goals)

• Parson’s Problems

• …. and more ….

Worked examples

• A worked example is a problem where the teacher works
through the solution step by step

• Reduces cognitive load – breaking down of information

• A good example of cognitive apprenticeship – experts
supporting novices

• Tools exist for worked examples (but teachers are better!)

• A sophisticated version is called “sub-goal labelling” where the
individual steps are clearly labelled as goals.

Worked example - example

Example dialogue with students

Step 1

• Let's analyse the problem in order to develop a plan…

• Reading the problem again, simply breaking the sentence
into sections, it looks as though there may be three steps
to the plan …

Step 2

• Looking closely at the plan now – how do you calculate an
average?

• Well – you total up the numbers first, don't you? And then
you can do a division to get the average.

• So the plan needs to be more like this, with four steps,
calculating the total BEFORE the average…

Step 3

• The first step – ask for three numbers – this is really "read
in three numbers". If we do this, where will we store
them? In fact do we need to store them?

• No, we could just add each one directly to a running total,
and then discard it.

• When reading in a series of numbers, it's always worth
asking – do I need to store them all, or can I process each
one as it comes in and then throw it away?)

• This allows us to merge the first two steps, so we now
have three steps …

1. read in three numbers, adding them to a total

2. calculate average

3. display this information

Step 4

• … etc

(THIS EXAMPLE COURTSEY OF PLAN C / CAS SCOTLAND

https://community.computingatschool.org.uk/resources/528
8/single)

Task: Create a program that asks for three numbers, calculates the total and average and displays this information.

The teacher’s toolkit

• Pair programming

• Use-modify-create

• PRIMM

• Peer instruction

• Worked examples (plus with sub-goals)

• Parson’s Problems

• …. and more ….

Parson’s Problems
• Basically mixed up lines of code

• Help students to learn algorithms & can uncover misconceptions

• There are tools for Parson’s Problems but bits of paper or the
interactive whiteboard is just as good (actually better as you can
talk about it)

In summary

• Pair programming

• Use-modify-create

• PRIMM

• Peer instruction

• Worked examples

• Parson’s problems

• …. and more ….

Key principles

• Break down the task

• Use examples

• Work together

• Reading code before writing

Key outcomes

• Cognitive load reduced

• Correct or better mental model

• Confidence in discussing programs

• Better use of programming

vocabulary

• Ability to work at different levels of

abstraction

Pause for comment and questions

We will now have a short break for you to make comments

Which of these strategies do you think you could put into
practice in your teaching?

What other strategies have you tried? Does copying code have a
place?

PRIMM in more detail

Where did PRIMM come from?

Areas of research

• Use-Modify-Create

• Tracing

• Levels of Abstraction

• Block Model

Primary research and experience

Survey in 2014 with 300 teachers
around challenges and strategies
relating to the teaching of
programming – several talked about
tracing and debugging activities
(Paper is here:
https://bit.ly/2Mze2GQ)

Own experience and other teachers
around reading code first.

https://bit.ly/2Mze2GQ

PRIMM Examples

Predict

Run

Investigate

Modify

Make
Lesson 3

PRIMM Examples

Predict

Run

Investigate

Modify

Make

Keep starter programs
on a shared drive

Students should
download, check what
they do and compare
with prediction

PRIMM Examples

Predict

Run

Investigate

Modify

Make

Ask different types of questions

PRIMM Examples

Predict

Run

Investigate

Modify

Make

Improve the pizza program so that it doesn’t print out
“and X” at the end. You will have to add an “if”
statement to do this.

Modify the program to have a conversation with
somebody about sport. An example is given below but
you can add your own questions.

Change your triangle function so that it uses a for loop

Write a function pentagon() to create a pentagon (5
sides) with sides length 200

Write a function hexagon() to create a blue hexagon (6
sides) with sides length 50

PRIMM Examples

Predict

Run

Investigate

Modify

Make

PRIMM Resources

http://primming.wordpress.com
Materials here that were
used for the two research
studies – and in time we
hope to upload teachers’

contributions from their own
PRIMM resources

http://primming.wordpress.com/

The PRIMM research

Pilot study 2017

6 teachers

80 students

4-7 lessons

Activity sheets

Teachers edited materials

“It was amazing! In one lesson, they
pretty much all got the concept of a

function”

Main study 2018

13 teachers

493 students PRIMM

180 in control group

Pre – Post test

Interviews of teachers

Focus group & journals

Findings of PRIMM research

• In the post-test the PRIMM group did significantly better than the
control group

• There was no gender difference (not reported)

• Teachers commented on their use of PRIMM:
• use for differentiation,

• structure and routine of lessons

• suitability for low ability students

• engagement of students

• learning programming vocabulary

Read more here: https://bit.ly/2sNu0UD - and another paper is under review

https://bit.ly/2sNu0UD

Increasing confidence …

“. . previously, when they’re writing their own programs, we
have so much trouble with syntax errors and half the lesson is
just them sorting out syntax. So actually being able to modify
it, they can think a little bit more about what their code is
doing rather than whether they’ve got a colon in the right
place or whatever. And then I think, moving on, once they get
to making their own, they’ve got that little bit more
confidence that they’ve got a starting point to move on from”
(Teacher A)

Differentiation

“The less able ones [students] enjoyed it (modify) because they
got what they were doing when they were at that stage. They
were more sure of themselves than they have been in previous
Python lessons where they’ve relied on my telling them. This
was them doing it themselves . . . the difference was
tangible.” (Teacher I)

The Block Model (Schulte, 2008)
What next?
More PRIMM-style materials
around the Block Model

Investigate questions should
focus on statements as well as
relations between statements
to encourage full
understanding.

Development of better
instruments for testing

Summary

Overview

• Can we all learn to program?

• Why programming can be difficult

• The myths about programming in school

• Key strategies for a teacher

• PRIMM in more detail

Finally

• England has £80m funding for Computing in school from 2018-2022. Comprehensive
resources and training available online (free) as well as face-to-face

• Follow developments at http://teachcomputing.org

• Subscribe to Hello World (http://helloworld.cc) for useful tips and ideas

Comments?
Questions?

http://teachcomputing.org/
http://helloworld.cc/

Questions?

