





### **National Workshop 3**







### **Session 3**

### **Curriculum planning**



*'Learning outcomes can best be defined as statements of what a learner knows, understands and is able to do after completion of learning.'* 

**CEDEFOP** (2009)

#### What will you do with LOs?



What content or resources do you need?

### **Key Message to remember:**

# Explore and teach the LOs through the lens of ALTs.

There are several ways to achieve this.





https://bubbl.us/NDcyMDQ2My84MTA1MjEvMDY4Zjc4M2E0N2Y3N2E3OWNIM GQ2NzUxZTk2M2NiMGE=@X?utm\_source=sharedlink&utm\_medium=link&s=9137683



https://bubbl.us/NDcyMDQ2My84MDI4MjMvMzcxNTMzNDBhMTlkZWUyZDBkY Tg5ZTUzYzI1ZjJIZTA=@X?utm\_source=sharedlink&utm\_medium=link&s=9057731





Created by priyanka from Noun Project



### Develop a curriculum map for January to April Focus on ALT2



### **Key Message to remember:**

Explore and teach the LOs through the lens of ALTs.

There are numerous ways to achieve this.

### **Group Activity - Instructions**

- 1. Have a copy of the LCCS specification to hand.
- 2. In the Chat, click on the link to the Google doc.
- 3. In the Google doc, click on the link to the Bubbl.us diagram corresponding to your breakout room number.
- 4. Develop a detailed curriculum map for January to April ALT2
- 5. Work in your group and consider...

Topics / LOs / Resources / Assessment / Build up to ALT2 / ALT2 / Equipment etc.

6. Present back to the wider group.

What will you do with LOs for ALT2?

In what order should you teach them?

What about repeating LOs / linking to the other strands?

How will students demonstrate they have achieved the learning outcomes?

What content or resources will you need?

What can you include for the Ordinary Level students?

Are there any considerations you should make for your students with SEN?

What about differentiation and extension of tasks?



**Key Skills of Senior Cycle** 

LCCS Specification: p12



What LOs will your students experience?

Are there links to the other strands?

What learning experiences will help your students to achieve these LOs?

What did you find challenging about this task?



Why did you make these decisions?

Where do you want to be in September 2021 in terms of the course?

How was your thinking extended in relation to curriculum planning?

In what way will you teach the LOs through the lens of the ALTs?



### **Additional Resources**





### worldometer













airbnb







#### **Data Science Communities**

IBM Data Science Community - <u>https://community.ibm.com/community/user/datascience/home</u>

Open Data Science - <u>https://ods.ai/</u>

Data Science Central - https://www.datasciencecentral.com/

Driven Data - <a href="https://www.drivendata.org/">https://www.drivendata.org/</a>

### **COMPSCI.IE**

All of these resources can be found on Compsci.

### **Analytics Toolkit**

pandas  $y_{it} = \beta' x_{it} + \mu_i + \epsilon_{it}$ 









### **Useful Tutorials**



http://introtopython.org/visualization\_earthquakes.html

https://realpython.com/tutorials/data-science/



Pythonic Data Cleaning With NumPy and Pandas Mar 26, 2018 Stata-science intermediate



The Ultimate Guide To Speech Recognition With Python

Mar 21, 2018 Sadvanced data-science machine-learning



Python Plotting With Matplotlib (Guide) Feb 28, 2018 States data-science

social sciences python python puthor

Python for Social Scientists Mata-science python





Using Pandas to Read Large Excel Files in Python Stata-science Analyzing Obesity in England With Python basics data-science



## **Python Libraries for ALT2**

A quick introduction

statistics re matplotlib pandas

#### **Measures of Central Tendancy**



```
# A simple program to calculate and display averages
from statistics import *
```

```
# Initialise a list of values
values = [2,3,5,2,4]
```

```
# Compute the 3 averages
arithmetic_mean = mean(values)
median_value = median(values)
modal value = mode(values)
```

```
# Display the answers
print("The mean is ", arithmetic_mean)
print("The median and mode are %d and %d" %(median value, modal value))
```

#### When the program is run the output looks like this:

```
The mean is 3.2
The median and mode are 3 and 2
```

#### **Measures of Central Tendancy**



#### Check out the online documentation

#### Averages and measures of central location

These functions calculate an average or typical value from a population or sample.

| mean()                      | Arithmetic mean ("average") of data.                            |
|-----------------------------|-----------------------------------------------------------------|
| <pre>fmean()</pre>          | Fast, floating point arithmetic mean.                           |
| <pre>geometric_mean()</pre> | Geometric mean of data.                                         |
| <pre>harmonic_mean()</pre>  | Harmonic mean of data.                                          |
| median()                    | Median (middle value) of data.                                  |
| <pre>median_low()</pre>     | Low median of data.                                             |
| <pre>median_high()</pre>    | High median of data.                                            |
| <pre>median_grouped()</pre> | Median, or 50th percentile, of grouped data.                    |
| mode()                      | Single mode (most common value) of discrete or nominal data.    |
| <pre>multimode()</pre>      | List of modes (most common values) of discrete or nomimal data. |
| <pre>quantiles()</pre>      | Divide data into intervals with equal probability.              |

https://docs.python.org/3/library/statistics.html

#### **Demonstration of matplotlib**



# A simple program to demonstrate use of matplotlib from matplotlib import pyplot as plt

```
# Initialise a list of values
values = [2,3,5,2,4]
```

```
# Intervals for the x-axis
x_axis = [0, 1, 2, 3, 4]
```

plt.plot(x\_axis, values, color='blue', lin

plt.title("Demo") # graph title
plt.ylabel("Values") # label the y-axis
plt.show() # Display the plot



#### Demonstration of matplotlib



PDST Professional Development Service for Teachers

#### **Text Analysis – word frequency**

PDDSTO

A program to visualise the most common words in a file from matplotlib import pyplot as plt from collections import Counter

```
# IMPORTANT: Make sure book.txt exists in runtime directory
bookFile = open("book.txt","r") # Open the file
text = bookFile.read() # read the file
bookFile.close() # close the file
text list = text.split() # create a list
```

```
# use counter to return the most common words
# format is .... [('the', 1507), ('and', 714), etc
most common words = Counter(text list).most common(10)
```

```
words = [] # an empty list of words
word count = [] # an empty list of counts
```

```
# Build up the lists
for word, count in most_common_words:
    words.append(word) # append the word to the words list
    word count.append(count)
```

# Now create and display the chart ....

#### **Text Analysis – word frequency**

#### ... continued from previous slide





#### **Regular Expressions**



Output

are 99 balloons

THERE balloons

are balloons

areballoons

THERE are RED balloons

THERE are RED balloons

**THERE are 99 RED balloons** 

#### A language that enables us to look for patterns in strings

import re

```
text1 = "THERE are 99 RED balloons"
print(re.sub('[0-9]', '', text1)) # remove digits
print(re.sub('[A-Z]', '', text1)) # remove uppercase
print(re.sub('[A-Z0-9]', '', text1)) # remove uppercase and digits
print(re.sub('[^a-z]', '', text1)) # leave lowercase
print(re.sub('[^a-zA-Z]', '', text1)) # leave letters and spaces
print(re.sub('[^a-zA-Z0-9]', '', text1)) # leave letters and digits
print(re.sub(r'\b\w{1,4}\b', '', text1)) # remove words of length 1-3
```

text1 = "\$%^\$% joe ^&\$%^&"
print(re.sub('[^a-zA-Z0-9]', '', text1))

joe

#### **Text Analysis – word frequency**



#### Eliminate words of three letters or less ... use Regular Expressions



#### Pandas

![](_page_31_Picture_1.jpeg)

#### Useful for very large files ... this file was sourced on Kaggle

| 1 | short_name        | age | dob        | height_cn | weight_k | nationalit | club_nam   | value_eur | wage_eur | player_po | preferred |
|---|-------------------|-----|------------|-----------|----------|------------|------------|-----------|----------|-----------|-----------|
| 2 | L. Messi          | 33  | 24/06/1987 | 170       | 72       | Argentina  | FC Barcelo | 67500000  | 560000   | RW, ST, C | Left      |
| 3 | Cristiano Ronaldo | 35  | 05/02/1985 | 187       | 83       | Portugal   | Juventus   | 46000000  | 220000   | ST, LW    | Right     |
| 4 | J. Oblak          | 27  | 07/01/1993 | 188       | 87       | Slovenia   | Atlético   | 7500000   | 125000   | GK        | Right     |
| 5 | R. Lewandowski    | 31  | 21/08/1988 | 184       | 80       | Poland     | FC Bayern  | 8000000   | 240000   | ST        | Right     |
| 6 | Neymar Jr         | 28  | 05/02/1992 | 175       | 68       | Brazil     | Paris Sain | 9000000   | 270000   | LW, CAM   | Right     |
| 7 | K. De Bruyne      | 29  | 28/06/1991 | 181       | 70       | Belgium    | Manchest   | 8700000   | 370000   | CAM, CM   | Right     |

#### .....

| 18911 | C. Pizarro    | 20 | 18/09/1999 | 176 | 70 | Chile    | Unión La   | 45000 | 500  | CB | Right |
|-------|---------------|----|------------|-----|----|----------|------------|-------|------|----|-------|
| 18912 | Shan Huanhuan | 21 | 24/01/1999 | 185 | 70 | China PR | Dalian YiF | 50000 | 2000 | ST | Right |
| 18913 | R. Dinanga    | 18 | 06/12/2001 | 182 | 73 | Republic | Cork City  | 45000 | 500  | ST | Right |
| 18914 | J. Browne     | 19 | 10/09/2000 | 180 | 73 | Republic | Finn Harps | 45000 | 500  | ST | Right |
| 18915 | P. McGarvey   | 16 | 02/08/2003 | 180 | 76 | Republic | Finn Harps | 30000 | 500  | GK | Right |
| 18916 | Xie Xiaofan   | 22 | 15/03/1998 | 177 | 75 | China PR | Jiangsu Su | 45000 | 2000 | CM | Right |
| 18917 | Wang Haijian  | 19 | 02/08/2000 | 185 | 67 | China PR | Shanghai   | 45000 | 1000 | CM | Right |
| 18918 | A. Cetiner    | 18 | 20/07/2001 | 175 | 70 | Republic | Shelbourr  | 40000 | 500  | CM | Right |
| 18919 | Huang Jiahui  | 19 | 07/10/2000 | 186 | 74 | China PR | Dalian YiF | 40000 | 1000 | CB | Right |
| 18920 | A. Phelan     | 19 | 20/06/2001 | 176 | 72 | Republic | Waterford  | 40000 | 500  | CM | Right |
| 18921 | J. Akintunde  | 24 | 29/03/1996 | 175 | 75 | England  | Derry City | 40000 | 550  | ST | Right |
|       |               |    |            |     |    |          |            |       |      |    |       |

#### Let's explore the player's value

#### **Pandas**

```
# Using pandas - recommended for larger files
import statistics
import pandas
# Read the entire CSV file into a pandas DataFrame
df = pandas.read_csv('FIFA21-player-list.csv')
```

```
# Filter out the column, value_eur
player values = df['value eur']
```

```
# Compute and display the mean
mean_value = round(statistics.mean(player_values), 2)
print("Mean Value:", mean value)
```

```
# Compute and display the median
median_value = statistics.median(player_values)
print("Median Value:", median value)
```

# Compute and display the min and max values
print("Min: €%f, Max: €%f" %(min(player values), max(player values)))

 Output looks like this:
 Mean Value: 2224813.29

 Median Value: 650000.0
 Min: €0.000000, Max: €105500000.000000

![](_page_32_Picture_7.jpeg)

![](_page_33_Picture_0.jpeg)

An Roinn Oideachais agus Scileanna Department of Education and Skills

![](_page_33_Picture_2.jpeg)