

Web Development Skills – Part A

2

Please	cite	as:	PDST,	Leaving Certificate Computer Science, Web Development Skills Workshop, Dublin,	2019

Web Development Skills – Part A

3

Manual Overview
The purpose of this manual to provide Phase One Leaving Certificate Computer Science

(LCCS) teachers with the knowledge, skills and confidence to design and develop websites

and web applications independently.

Although the manual will serve as support material for teachers who attend the Web

Application Development Workshop component of our two-year CPD programme, it is

envisaged that its real value will only come into play in the months after the workshops have

been delivered. Beyond these workshops, the manual may be used as a basic reference for

web development, but more importantly, as a teaching resource that might be used to

promote in teachers, a constructivist pedagogic orientation towards the planning and

teaching of web development in the LCCS classroom.

The manual itself is divided into five separate sections and is divided into three separate

hardcopy documents. This is Part A.

Part A
Section 1 – HTML

Section 2 – Cascading Style Sheets

Section 3 – UX Design

Part B
Section 4 – JavaScript

Part C

Section 5 – Databases

Web Development Skills – Part A

4

Section 1

HTML

Web Development Skills – Part A

5

Contents

Introducing HTML 07

• How the web works
• What is HTML?
• My first page
• Web browsers
• HTML tags
• HTML page structure
• HTML versions
• Exercise 1 - first page
• Reflection exercise

Basic Text Formatting 18

• How white space is collapsed
• Creating headings using the <hn> elements
• Structuring headings and paragraphs
• Creating paragraphs using the <p> element
• Creating line breaks using the
 element
• Creating preformatted text using the <pre> element
• Exercise 2 - Café
• Reflection exercise

Working with Lists 24

• Unordered lists using the and elements
• Ordered lists using the and elements
• Using the start attribute to change the starting number in ordered lists
• Specify a marker with the type attribute
• Definitions lists with the <dl>, <dt> and <dd> attributes
• Nesting lists

Fine-tuning Your Text 29

• The element
• The <cite> element
• The <q> element
• The <blockquote> element
• The <dfn> element
• The <code> element
• The <var> element
• The <samp> element
• Exercise 3 - Café Recipes
• Reflection exercise

Web Development Skills – Part A

6

Links and Navigation 34

• Creating a basic link to a page in the same folder using the <a> element
• Creating a link to an external web site
• Link colours
• A link to send an email
• Create a bookmark
• Exercise 4 - Adding links between pages

Tables 38

• A basic table
• Exercise 5 - Opening hours table

Images & Video 40

• Adding an image using the element
• The height and width attributes
• Using images as links
• Embedding a YouTube video
• Exercise 6 - Cafe
• Reflection exercise

Forms 45
• Text controls
• Option controls
• Checkboxes
• Radio buttons
• Lists
• Buttons
• Labelling controls
• Grouping controls
• Exercise 7 - Forms

Breakout Exercises 54

• Breakout A - Monster mark up
• Breakout B - Mark up a formal letter

HTML Glossary 63

HTML Resources 64

Web Development Skills – Part A

7

Introducing HTML

How the web works

What happens when you view a webpage in a web browser on your computer or phone?

This detail is not essential to writing web code in the short term, but before long you'll really

start to benefit from understanding what's happening in the background.

Clients and servers

Computers connected to the web are called clients and servers.

• Clients are the typical web user's internet-connected devices (for example, your

computer connected to your Wi-Fi, or your phone connected to your mobile network)

and web-accessing software available on those devices (usually a web browser like

Firefox or Chrome).

• Servers are computers that store webpages, sites, or apps. When a client device

wants to access a webpage, a copy of the webpage is downloaded from the server

onto the client machine to be displayed in the user's web browser.

The other parts of the toolbox

The client and server we've described above don't tell the whole story. There are many other

parts involved, and we'll describe them below.

Web Development Skills – Part A

8

For now, let's imagine that the web is a road. On one end of the road is the client, which is

like your house. On the other end of the road is the server, which is like a shop you want to

buy something from.

In addition to the client and the server, we need to discuss:

• The internet connection: this allows you to send and receive data on the web. It's

basically like the street between your house and the shop.

• TCP/IP: Transmission Control Protocol and Internet Protocol are communication

protocols that define how data should travel across the web. This is like the transport

mechanisms that let you place an order, go to the shop, and buy your goods.

• DNS: Domain Name Servers are similar to an address book for websites. When you

type a web address in your browser, the browser looks at the DNS to find the

website's real address before it can retrieve the website. The browser needs to find

out which server the website lives on, so it can send HTTP messages to the right

place (see below). This is like looking up the address of the shop so you can access

it.

• HTTP: Hypertext Transfer Protocol is an application protocol that defines a language

for clients and servers to speak to each other. This is the language you use to order

your goods.

• Component files: A website is made up of many different files, which are different

parts of the goods you buy from the shop. These files come in two main types:

o Code files: Websites are built primarily from HTML, CSS, and JavaScript.

o Assets: This is a collective name for all the other items that makes up a

website, such as images, music, video, Word documents, and PDFs.

Web Development Skills – Part A

9

So what happens?

When you type a web address into your browser (for our analogy that's like walking to the

shop):

1. The browser goes to the DNS server, and finds the real address of the server that the

website lives on.

2. The browser sends an HTTP request message to the server, asking it to send a copy

of the website to the client. This message, and all other data sent between the client

and the server, is sent across your internet connection using TCP/IP.

3. If the server approves the client's request, the server sends the client a "200 OK"

message, which means "Of course you can look at that website! Here it is", and then

starts sending the website's files to the browser as a series of small chunks called

data packets.

4. The browser assembles the small chunks into a complete website and displays it (the

goods arrive at your door!).

DNS explained

Real web addresses aren't the memorable strings you type into your address bar to find your

favourite websites. They are special numbers that look like this: 63.245.215.20.

This is called an IP address, and it represents a unique location on the web. However, it's

not very easy to remember. That's why Domain Name Servers were invented. These are

special servers that match up a web address you type into your browser (like "mozilla.org")

to the website's real (IP) address. Websites can be reached directly via their IP addresses.

You can find the IP address of a website by typing its domain into a tool like an IP Checker.

Web Development Skills – Part A

10

Packets

Earlier we used the term "packets" to describe the format in which the data is sent from

server to client. Basically, when data is sent across the web, it is sent as thousands of small

chunks, so that many different web users can download the same website at the same time.

If websites were sent as single big chunks, only one user could download one at a time,

which obviously would make the web very inefficient and not much fun to use.

What is HTML?

HTML is the standard markup language for creating Web pages. It is not a programming

language; it is a markup language used to tell your browser how to structure the pages you

visit. It can be as complicated or as simple as the web developer wishes it to be.

Ø HTML stands for Hyper Text Markup Language

Ø HTML describes the structure of web pages using markup

Ø HTML elements are the building blocks of HTML pages

Ø HTML elements are represented by tags

Ø HTML tags label pieces of content such as "heading", "paragraph", "table", and so on

Ø Browsers do not display the HTML tags, but use them to render the content of the

page.

Web Development Skills – Part A

11

First Web Page

Ø The <!DOCTYPE html> declaration defines this document to be HTML5.

Ø The <html> element is the root element of an HTML page.

Ø The <head> element contains meta information about the document.

Ø The <title> element specifies a title for the document.

Ø The <body> element contains the visible page content.

Web Development Skills – Part A

12

Ø The <h1> element defines a large heading.

Ø The <p> element defines a paragraph.

Web Browsers
The purpose of a web browser (Chrome, IE, Firefox, Safari) is to read HTML documents and

display them. The browser does not display the HTML tags, but uses them to determine how

to display the document:

HTML Tags
HTML tags are element names surrounded by angle brackets:

<tagname> content goes here...</tagname>

Ø HTML tags normally come in pairs like <p> and </p>

Ø The first tag in a pair is the start tag, the second tag is the end tag

Ø The end tag is written like the start tag, but with a forward slash inserted before the

tag name

Web Development Skills – Part A

13

The main parts of our element are:

1. The opening tag: This consists of the name of the element (in this case, p),

wrapped in opening and closing angle brackets. This states where the element

begins or starts to take effect.

2. The closing tag: This is the same as the opening tag, except that it includes a

forward slash before the element name. This states where the element ends.

Failing to include a closing tag is a common beginner error and can lead to

strange results.

3. The content: This is the content of the element.

4. The element: The opening tag plus the closing tag plus the content equals the

element.

Web Development Skills – Part A

14

HTML Page Structure
Most structured text consists of headings and paragraphs, whether you are reading a story, a

newspaper, a college textbook, a magazine, etc.

• Users looking at a web page tend to scan quickly to find relevant content, often just

reading the headings to begin with (we usually spend a very short time on a web

page). If they can't see anything useful within a few seconds, they'll likely get

frustrated and go somewhere else.

• Search engines indexing your page consider the contents of headings as important

keywords for influencing the page's search rankings. Without headings, your page

will perform poorly in terms of SEO (Search Engine Optimisation).

• Severely visually impaired people often don't read web pages; they listen to them

instead. This is done with software called a screen reader. This software provides

ways to get fast access to given text content. Among the various techniques used,

they provide an outline of the document by reading out the headings, allowing their

Web Development Skills – Part A

15

users to find the information they need quickly. If headings are not available, they will

have to listen to the whole document read out loud.

• To style content with CSS, or make it do interesting things with JavaScript, you need

to have elements wrapping the relevant content, so CSS/JavaScript can effectively

target it.

Visualisation of an HTML page structure

The HTML head is the contents of the <head> element - unlike the contents of the <body>

element (which are displayed on the page when loaded in a browser), the head's content is

not displayed on the page. Instead, the head's job is to contain metadata about the

document.

Metadata is data that describes data, and HTML has an "official" way of adding metadata to

a document - the <meta> element. There are a lot of different types of <meta> elements that

can be included in your page's <head>, but we won't try to explain them here.

Web Development Skills – Part A

16

HTML Versions
Since the early days of the web, there have been many versions of HTML:

HTML5

HTML5 is the new web standard. It follows HTML 4 (which came out in 1997) and XHTML.

Since the introduction of HTML4, a lot has happened with the web and something needed to

be done to address all the new technologies and latest multimedia. HTML5 is the result of

cooperation that began in 2006 between the World Wide Web Consortium (W3C) and the

Web Hypertext Application Technology Working Group (WHATWG).

The basic aim of HTML5 is to provide two things (1) to improve the language and (2) to

support the latest multimedia. In order to accomplish this, some ground rules were

established by the W3C and WHATWG. Among them were to reduce the need for external

plug-ins (such as Flash plug-ins), better handling of errors, and more markup elements

(tags) to replace scripting. HTML5 should also be device independent (that is, understood by

computers and the many devices in existence today) while also keeping it easily readable.

Web Development Skills – Part A

17

Exercise 1
Create the following simple web page. Please type out the text.

Reflection

Reflect on what you have learned about HTML so far.

Use the space below to write five things about HTML.

1.

2.

3.

4.

5.

Web Development Skills – Part A

18

Basic Text Formatting

How white space is collapsed
Most structured text consists of headings and paragraphs, whether you are reading a story, a

newspaper, a college textbook, a magazine, etc.

This paragraph below shows how multiple spaces between words are treated as a single

space. This is known as white space collapsing, and the big spaces between some of the

words will not appear in the browser. It also demonstrates how the browser will treat multiple

carriage returns (new lines) as a single space, too.

Web Development Skills – Part A

19

Creating headings using the hn elements
The HTML <h1>–<h6> elements represent six levels of section headings. <h1> is the

highest section level and <h6> is the lowest.

Web Development Skills – Part A

20

Structuring headings and paragraphs
Almost every document you create will contain some form of text.

White Space and Flow

Before you start to mark up your text, it is best to understand what HTML does when it

comes across spaces and how browsers treat long sentences and paragraphs of text.

Creating Headings

No matter what sort of document you are creating, most documents have headings in some

form or other.

Web Development Skills – Part A

21

Creating paragraphs using the <p> element
The HTML <p> element represents a paragraph. Paragraphs are usually represented in

visual media as blocks of text separated from adjacent blocks by blank lines and/or first-line

indentation, but HTML paragraphs can be any structural grouping of related content, such as

images or form fields.

Creating line breaks using the
 element
When you want to start a new line you can use the line break element. So, the next

word will appear on a new line. Without the line break element, new lines are started only

when the sentence reaches the end of the screen; this sentence should be long enough to

wrap on your screen. Try resizing your browser window and see how the position where the

line wraps onto a new line changes.

Web Development Skills – Part A

22

Creating preformatted text using the <pre> element
The HTML <pre> element represents preformatted text which is to be presented exactly as

written in the HTML file. The text is typically rendered using a non-proportional

("monospace") font. Whitespace inside this element is displayed as written. The following

text is written inside a <pre> element.

Web Development Skills – Part A

23

Exercise 2 - Example Café
Create the following simple web page for a Café. Use the text file provided to avoid typing it
out.

Reflection

Reflect on what you have learned about formatting text in HTML.

Use the space below to write three different tags for formatting text.

1.

2.

3.

Web Development Skills – Part A

24

Working with Lists

Now let's turn our attention to lists. Lists are everywhere in life - from your shopping list to

the list of directions you subconsciously follow to get to your house every day. Lists are

everywhere on the Web too, and we've got three different types to worry about.

Unordered lists using the and elements

An unordered list starts with the tag. Each list item starts with the tag.

The list items will be marked with bullets (small black circles) by default.

Web Development Skills – Part A

25

Ordered lists using the and elements

The HTML element represents an ordered list of items, typically rendered as a

numbered list.

Web Development Skills – Part A

26

Using the start attribute to change the starting number in
ordered lists
The start attribute specifies the start value of the first list item in an ordered list.

Web Development Skills – Part A

27

Definitions lists with the <dl>, <dt> and <dd> attributes
The <dd> tag is used to describe a term/name in a description list. The <dd> tag is used in

conjunction with <dl> (defines a description list) and <dt> (defines terms/names). Inside a

<dd> tag you can put paragraphs, line breaks, images, links, lists, etc.

Web Development Skills – Part A

28

Nesting lists
A nested list is a list within a list. If you've ever created a bulleted outline in a word

processing document you probably used a variety of indentations and bullet point types to

denote items that were subpoints of another item in the outline. This is the effect we're going

for when we create nested lists.

Web Development Skills – Part A

29

Fine-tuning Your Text

The element

The HTML Strong Importance Element () indicates that its contents have strong

importance, seriousness, or urgency.

In the following sentence, the words can cause blindness are contained inside the

element.

The <cite> element

The <cite> tag defines the title of a work (e.g. a book, a song, a movie, a TV show, a

painting, a sculpture, etc.). It is used for quoting text from another source.

Web Development Skills – Part A

30

The <q> element
If your quotation is going to appear only within a sentence, you should use the <q> element.

The following sentence uses the <q> element to form a quote:

The <blockquote> element

The blockquote element defines "a section [within a document] that is quoted from another

source". The blockquote element is used to indicate the quotation of a large section of text

from another source.

Using the default HTML styling of most web browsers, it will indent the right and left margins

both on the display and in printed form, but this may be overridden by Cascading Style

Sheets (CSS).

Web Development Skills – Part A

31

The <dfn> element

The HTML Definition element (<dfn>) is used to indicate the term being defined within the

context of a definition phrase or sentence. The following sentence uses a <dfn> element for

the important term HTML.

The <code> element

The <code> Element For Adding Code to Your Web Pages

The <var> element

The HTML Variable element (<var>) represents the name of a variable in a mathematical

expression or a programming context. It's typically presented using an italicized version of

the current typeface.

Web Development Skills – Part A

32

The <samp> element
The <samp> element is used to display output from a process, such as an error message

from a computer script. It was originally designed for technical documentation, and renders

the content of the element in a monospace font.

Web Development Skills – Part A

33

Exercise 3 - Example Café Recipes
Create the following simple web page for the Example Café. The text will be provided to

avoid typing.

Reflection

Reflect on what you have learned about fine-tuning your text in HTML.

Use the space below to write three different tags for fine-tuning your text.

Links and Navigation

Web Development Skills – Part A

34

Links & Navigation

Creating a basic link to a page in the same folder using the
<a> element

Ø HTML links are hyperlinks.

Ø You can click on a link and jump to another document.

Ø When you move the mouse over a link, the mouse arrow will turn into a little hand.

In HTML, links are defined with the <a> tag:

Creating a link to an external Web site
The href attribute specifies the destination address (https://www.rte.ie) of the link. The link

text is the visible part (RTE Website).

Web Development Skills – Part A

35

Link Colours
By default, a link will appear like this (in all browsers):

• An unvisited link is underlined and blue

• A visited link is underlined and purple

• An active link is underlined and red

You can change the default colours, by using CSS.

A link to send an email
Using the mailto link it will allow you to send you an e-mail

 Click Here To Email Me

The mailto link is written in the same format as a hyperlink except you use mailto: in place of

the http:// and your e-mail address in place of the page address or URL. You must include

the code at the end of the line in order for the mailto link to work. There is NO space

between the mailto: and the e-mail address.

Web Development Skills – Part A

36

Create a Bookmark
Ø HTML bookmarks are used to allow readers to jump to specific parts of a Web page.

Ø Bookmarks can be useful if your webpage is very long.

Ø To make a bookmark, you must first create the bookmark, and then add a link to it.

Ø When the link is clicked, the page will scroll to the location with the bookmark.

First, create a bookmark with the id attribute:

<h2 id="C4">Chapter 4</h2>

Then, add a link to the bookmark ("Jump to Chapter 4"), from within the same page:

Jump to Chapter 4

Web Development Skills – Part A

37

Example 4 Cafe - Adding links between pages
Open the following web page for a Café and make edits or changes to it. Use the file

provided.

Use the space below for rough work.

Tables

Web Development Skills – Part A

38

Tables

An HTML table is defined with the <table> tag. Each table row is defined with the <tr> tag. A

table header is defined with the <th> tag. By default, table headings are bold and centred. A

table data/cell is defined with the <td> tag.

Ø Use the HTML <table> element to define a table

Ø Use the HTML <tr> element to define a table row

Ø Use the HTML <td> element to define a table data

Ø Use the HTML <th> element to define a table heading

Ø Use the HTML <caption> element to define a table caption

Web Development Skills – Part A

39

Example 5 - Adding a table
Create the following web page for the Café. A text file will be provided.

Use the space below for rough work.

Ø
Ø
Ø
Ø
Ø
Ø
Ø
Ø

Ø Images
Ø

Images & Videos

Web Development Skills – Part A

40

Image & Video

Adding an image using the element

Ø In HTML, images are defined with the tag.

Ø The tag is empty, it contains attributes only, and does not have a closing tag.

Ø The src attribute specifies the URL (web address) of the image.

The height and width attributes
Ø You can use the width and height attributes.

Ø The width and height attributes are in pixels.

Web Development Skills – Part A

41

Web Development Skills – Part A

42

Using images as links
To use an image as a link, put the tag inside the <a> tag.

Images in Another Folder
If not specified, the browser expects to find the image in the same folder as the web page.

However, it is common to store images in a sub-folder. You must then include the folder

name in the src attribute:

<img src="/images/html5.gif" alt="HTML5 Icon" style="width:128px;height:128px;"

Embedding a YouTube video
To play your video on a web page, do the following:

Ø Upload the video to YouTube

Ø Take a note of the video id

Ø Define an <iframe> element in your web page

Ø Let the src attribute point to the video URL

Ø Use the width and height attributes to specify the dimension of the player

Ø Add any other parameters to the URL (see below)

Web Development Skills – Part A

43

Reflection

Reflect on what you have learned about using HTML so far.

Use the space below to write your thoughts.

Web Development Skills – Part A

44

Exercise 6 - Example Cafe
Create the following simple web page for a Café. All files will be provided.

Roughwork

Use the space below for roughwork:

Web Development Skills – Part A

45

Forms
(Tutorial from http://www.htmlquick.com)

HTML forms serve the purpose of collecting information, which is later sent back to the

server. For proper operation, it's important that the form provided in HTML is paired with

some server-side code, usually called "processing agent", that will be responsible for

receiving and processing the information as the author sees fit. This processing may consist

of, for example, saving the information received or sending it by e-mail.

A form is basically a container for controls. Each control in a form is thought to collect

information input by users, in ways that go from text lines to file uploads, through options,

dates, passwords and many more. Once users have filled the form with data, they can

submit it back to the server in order to let the processing agent administrate the gathered

information.

The following code shows the basic structure of a form, with its opening and closing tags

wrapping a set of controls.

<form>
 [Set of controls]
</form>

But this model says nothing about how the form is going to be processed and where. Such

information can be provided with attributes like: action, which indicates the location of the

processing agent; method which determines the method used to pack form data before it's

sent to the processing agent; and target, which indicates where the processing results will be

displayed. Here we'll talk about the action attribute alone, leaving the other two to be

analysed in the reference of form.

The following form has been declared with the URI of a processing agent in

the action attribute. You can see the processing agent taking over in a new window when

you submit the form.
<form action="../form-result.php" target="_blank">
 <input type="submit" value="Submit the form">
</form>

Web Development Skills – Part A

46

Text Controls
Text input controls provide the means to collect textual data, like names, directions, phrases,

messages, passwords, etc. In the following sections we'll analyse the two most used and

basic text controls.

Single-line Text Input
A single-line text input, which allows only one line of text to be entered, is one of the many

controls that's declared with the input element. In this case, the input element should present

the value "text" in the type attribute.

With this alone, the control is already visible, but a name is needed if there's an intention to

gather the data entered by the user in this control. The value of the name attribute will

identify, server-side, the user's input in the control. The following example shows a basic

implementation of a text input. Additionally, we're enclosing the control and its label in

a paragraph, as these two can be considered to conform a unit with an idea that separates it

from the rest.

<form action="../form-result.php" target="_blank">
 <p>
 Enter your full name: <input type="text" name="fullname">
 <input type="submit" value="Send data">
 </p>
</form>

After sending the form's data you can see clearly in the information displayed by the

processing agent, how the data is received server-side. There you can also see that

the name declared for the control is associated to the data entered by the user.

Multi-line Text Input
This type of control is very similar to the single-line text input but it has the particularity of

allowing multiple lines of text to be entered. A multi-line text control is usually rendered as a

box, tall enough to contain more than one line of text at the same time. This representation,

usually provides a scrollbar mechanism to allow users to see all entered text, particularly

when it's long enough to exceed the box boundaries.

Web Development Skills – Part A

47

A multi-line text input is inserted with the text area element. Like before, the name attribute

provides a name for the control that will help processing agents to identify the data submitted

by the user.

In the following example we're improving the previous form to allow both types of text strings

(single-line and multi-line) to be entered. In the example proposed, each control adapts

better to the type of data it's supposed to collect.

<form action="../form-result.php" target="_blank">
 <p>Enter your full name: <input type="text" name="fullname"></p>
 <p>
 Leave a message:

 <textarea name="message"></textarea>
 </p>
 <input type="submit" value="Send data">
</form>

Option Controls
These controls allow users to select one or more options form a list of predefined values.

Option controls can be presented in different styles and with different mechanisms of

interaction with the user, depending mainly on the element utilized. A list of options can be

declared in three ways: with checkboxes, with radio buttons and with lists.

Checkboxes
A checkbox is a particular type of option that can be checked or unchecked upon user

interaction. This allows authors to collect data like preferences, acceptance of terms y

conditions, categories, or any other subject that can be answered with "yes" or "no". One

thing this control has in particular is that, even when it can be declared as part of a thematic

group, each checkbox is independent from all other checkboxes in the form.

Checkboxes are represented by the input element, when it has the value "checkbox" in

the type attribute. Here the value of the name attribute also plays a role, by identifying the

option server-side. In the following example, a few checkboxes have been declared as part

of a thematic group of options. Remember that this aggrupation is only made by theme and

position; the selection of checkboxes continues to be independent.

<form action="../../form-result.php" target="_blank">
 <p>

Web Development Skills – Part A

48

 Select your interests:

 <input type="checkbox" name="movies"> Movies

 <input type="checkbox" name="sports"> Sports

 <input type="checkbox" name="videogames"> Videogames
 </p>
 <p><input type="submit" value="Send data"></p>
</form>

A couple of things can be noted in the previous example. The first one is the lack of

association between the checkbox and the text that describes it or, in other words, the

impossibility of activating the checkbox by clicking the associated text. This is something that

can be easily remedied converting the text into a label for the control, subject we'll treat later

in this tutorial.

The second one is about how checkbox data is received server-side. If you submit the form,

you'll see that only the selected checkboxes are sent to the processing agent. Their value,

that depends very much on the language used server-side, is irrelevant considering that the

mere presence of the checkbox's data is indicating, alone, its activation state.

Radio Buttons
While checkboxes are independent and can be declared on their own, radio buttons are

options that need to be grouped in order to have a meaning. Only one option can be

selected at a time. This means, among other things, that when you select one option, the

previous selected option gets deselected.

A radio button is also declared with the input element, but with the value "radio" in

the type attribute. Here things get a little different from what happened with checkboxes,

because the value of the name attribute needs to be shared by all the options in the same

group. In other words, this is the mechanism that needs to be used in order to create a group

of radio buttons.

But then, where's the value that tells the processing agent what option in the group has been

selected? The answer to this question is in the value attribute. As the purpose of this

attribute is to identify options in a group, its value should be different for each option.

In the following example a group of radio buttons has been declared to conform a group

where only one option can be selected, something that absolutely makes sense in this

context. For this purpose, all the buttons share the same name and have each a

different value.

Web Development Skills – Part A

49

<form action="../../form-result.php" target="_blank">
 <p>
 Income:

 <input type="radio" name="income" value="lowerthan1000"> Lower than
$1,000.00

 <input type="radio" name="income" value="from1000to5000"> From
$1,000.00 to $5,000.00

 <input type="radio" name="income" value="higherthan5000"> Higher than
$5,000.00
 </p>
 <p><input type="submit" value="Send data"></p>
</form>

Lists
A list of options is a control that can resemble, concerning its mechanics, each of the two

controls previously analysed, depending on the presence of the Boolean attribute multiple.

This attribute changes radically the behaviour of a list, by making possible the selection of

only one single option at a time or many.

The structure of a list is composed, mainly, by two elements: select, that acts as the

container for the options; and option, that represents one of the many options the control

may present.

When the multiple attribute is absent, a list control behaves like a radio button group, where

only one option can be selected at a time. The next example reflects this behaviour, which

fits perfectly with the purpose of the field.

 <p>
 Gender:
 <select name="gender">
 <option>Male</option>
 <option>Female</option>
 </select>
 </p>
 <p><input type="submit" value="Send data"></p>
</form>

In the previous example, you can see that what's sent to the server is the content of the

selected option. But authors can change this behaviour if they think it's necessary, by

declaring the attribute value for the option. When this attribute is present, its value is sent to

the processing agent instead of the content of the element.

Web Development Skills – Part A

50

Now, when the multiple attribute is present, the list behaves like a set of checkboxes, where

not only one but many options can be selected at the same time. This configuration requires

that a couple of square braces follow any value the author choses for the name attribute. If

this requirement isn't fulfilled, processing agents will receive only the first selected option.

The next example shows a list of options that can be selected without restrictions. It also

makes use of the value attribute in the options, to avoid using unnecessary long values

during data processing, server-side.

<form action="../../form-result.php" target="_blank">
 <p>
 Select categories:

 <select multiple name="categories[]">
 <option value="art">Art and entertainment</option>
 <option value="tv">Television and movies</option>
 <option value="kids">Kids and teenagers</option>
 <option value="diy">Do it yourself</option>
 </select>
 </p>
 <p><input type="submit" value="Send data"></p>
</form>

Buttons
A button is a special type of control that's been designed to interact with the user in a

singular way: an action is executed every time the user presses it. There's a wide range of

buttons, each having some peculiarities in relation to its capabilities or behaviour, but here

we'll only analyse the two most widely used in basic forms.

Submit buttons
A submit button has the predefined action of submitting the form when activated. Unless

other mechanisms for form submission are provided, the presence of this button is

necessary if there's an intention to allow users to submit the form.

Submit buttons are inserted with the input element, having the value "submit" in

its type attribute. The value attribute is important in this control, as its value is displayed as a

label inside the button. The following example shows a form with a text input and a submit

button.

<form action="../../form-result.php" target="_blank">
 <p>
 Edit your description:

Web Development Skills – Part A

51

 <input type="text" name="desc">
 <input type="submit" value="Save edits">
 </p>
</form>

Reset buttons
Like submit buttons, reset buttons also have a predefined action. But in this case, the

predefined action consists in the reset of the form fields to their initial values. In other words,

the state of the fields in a form that's been reset is the same as when the page has loaded.

This action removes all changes the user has applied to the values of the controls.

It would be good to note here that all controls may have a predefined value, this is, a value

that's present in the form when the page loads. The way authors have to specify this default

value depends on the control. To know how to specify a default value in a particular control

type, check the reference for the control in this list.

In the following example you'll be able to test the functionality of the reset button.

This form has been declared with a single-line text input, a couple of radio buttons and

a checkbox. All these controls have a default value specified with the

attributes value and checked.

<form action="../../form-result.php" target="_blank">
 <p>Send message: <input type="text" name="message" value="I'm
ready!"></p>
 <p>
 <input type="radio" name="when" value="today" checked> Today

 <input type="radio" name="when" value="tomorrow"> Tomorrow
 </p>
 <p><input type="checkbox" name="copy" checked> Send me a copy</p>
 <p>
 <input type="reset" value="Reset the form">
 <input type="submit" value="Send message">
 </p>
</form>

Labelling Controls
Almost any control in a form can be labelled. Labelling controls is a worthwhile operation that

enhances accessibility on many fronts. This association between a piece of text and a

control will solve the problem noted in previous examples of this tutorial, particularly

with radio buttons and checkboxes.

Web Development Skills – Part A

52

A label can be assigned with the label element. The easiest of the two existing methods for

assigning a label to a control, consists of declaring both, the text and the control, as content

of the label element. The next example has a couple of controls associated to labels with this

method. There you can see how a control receives the focus when its label is clicked.

<form action="../../form-result.php" target="_blank">
 <p><label>Name: <input type="text" name="fullname"></label></p>
 <p>
 Gender:
 <label><input type="radio" name="gender" value="male"> Male</label>
 <label><input type="radio" name="gender" value="female"> Female</label>
 </p>
 <p><label><input type="checkbox" name="newsletter"> I'd like to receive
the newsletter</label></p>
 <p><input type="submit" value="Send data"></p>
</form>

Grouping controls
Sometimes, when a form is large, segmentation might play a role in the improvement of

organisation and ease of use. This is why HTML provides the fieldset element, which is a

container for controls. With this element, authors can make divisions to the form and

organize controls thematically.

A fieldset can also have a title to identify the composition or purpose of the set of controls it

contains. This title can be provided with the legend element, which must be declared as the

first child of the fieldset. The following example shows a small form divided into two thematic

groups.
<form action="../../form-result.php" target="_blank">
 <fieldset>
 <legend>Personal information</legend>
 <p><label>Name: <input type="text" name="fullname"></label></p>
 <p><label>Address: <input type="text" name="address"></label></p>
 </fieldset>
 <fieldset>
 <legend>Preferences</legend>
 <p>
 <label><input type="checkbox" name="arts"> Arts</label>

 <label><input type="checkbox" name="television">
Television</label>

 <label><input type="checkbox" name="videogames">
Videogames</label>

 <label><input type="checkbox" name="sports"> Sports</label>

 </p>
 </fieldset>
 <input type="submit" value="Send data">

Web Development Skills – Part A

53

Exercise 7 – Forms

1. Have a look at the sample files supplied.

2. Create a simple form for one of the pages from the previous Café website.
3. Add in a new link (which links to the form) in the menu at the top of the page.

Roughwork

Use the space below for roughwork:

Web Development Skills – Part A

54

 Breakout Exercises

Sourced from

Breakout A - Monster Mark-up

Getting Started
You will redesign a jumbled webpage into something more clear and informative for your
readers! Download all the files from the folder supplied.

1. Add a title with h1
Let's wrap the first "line" of the webpage with h1 tags. h1 stands for heading, level 1,

which is like a top level title.

Try to add the tags like this:

<h1>Wanted: Creature Collectors</h1>

If it works, you should have a title on its own line on your webpage because h1 is a

block element.

2. Make a paragraph

Next, let's use the <p> tag to create a paragraph. Paragraphs are block elements, so

if we do this right, the paragraph should be on its own line, so to speak, with space

above and below it.

Try something like this:

Web Development Skills – Part A

55

<p>Do you have what it takes to track and capture harmless monsters all around

town? Are you ready to collect and train an army of adorable minions? When the time

comes, will you be victorious in the fight to raise the cutest monster imaginable?</p>

3. Put the image on its own line

Now we'll try to put the - or image - on its own line. Images can be treated like

block elements or inline elements depending on whether or not you wrap inline text

around them. Let's try to give the image its own space with one paragraph above it

and one below it. Hit return to put the tag on its own line like this:

If you want to use a different picture, find one online with a search engine

like Creative Commons that will find images you are free to use. Once you have the

URL, or web address, of your new image, replace the src - or source - of the original

image with your new address.

The alt attribute here stands for "alternative text." That text will show up if the image

or link to it is ever broken and it's what the computer reads out loud to people who

use screen-readers to help them access the web if they have difficulty seeing a page.

Always include alt text for your images to improve the accessibility of your webpage!

4. Make a paragraph followed by a list

For our next step, we'll make a list. We'll build the list using the stats shared on the

webpage. To make a list in HTML you can use an ordered list tag - - with list

items - or - that show up as numbers. You can also use an unordered list tag

- - to make a list with bullet points instead of numbers. Each list and list item is

its own block element.

Try to start a new paragraph followed by a list like this:

<p>Play Creature Collector: Totes Adorbs Edition today! Features</p>

•

• 345 equally adorable monsters

Web Development Skills – Part A

56

• 722 ability & equipment slots

• 921 trainable skills

• 12 difficult levels

• Countless virtual collection spots and battleground around the

world

•

5. Create a closing paragraph & check out the link

Finally, wrap the rest of the text in its own closing paragraph. You can also break up

the text into several paragraphs if you want to chunk the information further.

Aim for something like this:

<p>Everything is accessible through your smartphone, watch, tablet, or 3D glasses!

Available wherever Creature Collector: The Endbeginniningning is sold. Not

compatible with Creature Collector: Travel Edition. Requires Creature Collector:

Starter Pack 3 to play. Visit

creaturecollector.netorgcom for exclusive downloadable content.</p>

Check out the <a> which is the tag for a link. You can see that links are inline - they

stay within the line of text that holds the link. You can try to change the href - or

"hypertext reference" - of the link to one of your favourite websites to share with your

fellow learners.

6. Add some style with inline tags

Go back through your paragraphs and add some style using the tags for bold, italics,
and underline. Try to use each tag at least once to highlight parts of the page that

you want to emphasize.

• You put around words you want to make bold.

• You put around words you want to put in italics.

• You put <u></u> around words you want to underline.

Congratulations on revising this jumbled webpage into something more clear and

informative for your readers! Look at the way you used block elements to chunk

Web Development Skills – Part A

57

information and how you used inline elements to add links and highlight key

information. Keep these tags and their uses in mind as you begin working on your

own webpages!

Breakout B - Mark up a formal letter
For this project, your task is to mark up a letter that needs to be hosted on a university

intranet. The letter is a response from a research fellow to a prospective PhD student

concerning their application to work at the university

• To get started, you will need two files - the CSS you need to include in your HTML

and the raw text for the letter.

• Create a new .html file using your text editor to do your work in

• You don't need to know any CSS to do this assessment; you just need to put the

provided CSS inside an HTML element.

• Use the W3C HTML validator to validate your HTML - https://validator.w3.org/

Block/structural semantics:

• You should structure the overall document with an appropriate structure including

doctype, and <html>, <head> and <body> elements.
• The letter in general should be marked up with a structure of paragraphs and

headings, with the exception of the below points. There is one heading (the "Re:"

line) and three second level headings.
• The semester start dates, study subjects and exotic dances should be marked up

using an appropriate list type.

• The two addresses can just be put inside paragraphs. The <address> element is not

appropriate for them — think about why. In addition, each line of the addresses

should sit on a new line, but not be in a new paragraph.

Inline semantics:

• The names of the sender and receiver (and "Tel" and "Email") should be marked up

with strong importance.

Web Development Skills – Part A

58

• The four dates in the document should be given appropriate elements containing

machine-readable dates.

• The first address and first date in the letter should be given a class attribute value of

"sender-column"; the CSS you'll add later will then cause these to be right aligned, as

should be the case in a classic letter layout.

• The five acronyms/abbreviations in the main text of the letter should be marked up to

provide expansions of each acronym/abbreviation.

• The six sub/superscripts should be marked up appropriately — in the chemical

formulae, and the numbers 103 and 104 (they should be 10 to the power or 3 and 4,

respectively).

• Try to mark up at least two appropriate words in the text with strong

importance/emphasis.

• There are two places where a hyperlink should be added; add appropriate links with

titles. For the location that the links point to, just use http://example.com.

• The university motto quote and citation should be marked up with appropriate

elements.

The head of the document:

• The character set of the document should be specified as utf-8 using an appropriate

meta tag.

• The author of the letter should be specified in an appropriate meta tag.

• The provided CSS should be included inside an appropriate tag.

Web Development Skills – Part A

59

Breakout Exercise II - Mark up a formal letter

Web Development Skills – Part A

60

Breakout C
For this breakout, your task is to take the content for the homepage of a bird watching

website and add structural elements to it so it can have a page layout applied to it. It needs

to have:

• A header spanning the full width of the site containing the main title for the page, the

site logo, and the navigation menu. The title and logo appear side by side once

styling is applied, and the navigation appears below those two items.

• A main content area containing two columns - a main block to contain the welcome

text, and a sidebar to contain image thumbnails.

• A footer containing copyright information and credits.

You need to add a suitable wrapper for:

• The header

• The navigation menu

• The main content

• The welcome text

• The image sidebar

• The footer

You should also:

Apply the provided CSS to the page by adding another <link> element just below the existing

one provided at the start.

Hints and tips
• You don't need to know any CSS to do this assessment; you just need to put the

provided CSS inside an HTML element.

• The provided CSS is designed so that when the correct structural elements are

added to the mark-up, they will appear green in the rendered page.

Web Development Skills – Part A

61

• If you are getting stuck and can't envisage what elements to put where, it often helps

to draw out a simple block diagram of the page layout, and write on the elements you

think should wrap each block.

Example
The following screenshot shows an example of what the homepage might look like after

being marked up.

Note
HTML5 introduced new structurally based elements, including

the <header>, <nav>, <article>, <section>, <aside>, and <footer> elements.

All of these new elements are intended to give meaning to the organisation of our pages and

improve our structural semantics. They are all block-level elements and do not have any

Web Development Skills – Part A

62

implied position or style. Additionally, all of these elements may be used multiple times per

page, so long as each use reflects the proper semantic meaning.

Block vs. Inline Elements
Most elements are either block- or inline-level elements. What’s the difference?

Block-level elements begin on a new line, stacking one on top of the other, and occupy any

available width.

Block-level elements may be nested inside one another and may wrap inline-level elements.

We’ll most commonly see block-level elements used for larger pieces of content, such as

paragraphs.

Inline-level elements do not begin on a new line. They fall into the normal flow of a

document, lining up one after the other, and only maintain the width of their content. Inline-

level elements may be nested inside one another; however, they cannot wrap block-level

elements. We’ll usually see inline-level elements with smaller pieces of content, such as a

few words.

Web Development Skills – Part A

63

HTML Glossary

HTML: Hypertext Markup Language, the language of the web, the skeleton of a webpage.

Element: part of a webpage, like a paragraph or image.

Tag: an HTML label that identifies an element on a webpage, like <p> identifies a

paragraph.

Opening Tag: the tag that begins part of a webpage, like <p> before a paragraph.

Closing Tag: the tag that ends part of a webpage with a slash, like </p> to end a paragraph.

Attribute: a characteristic of an element on a webpage, like background-color or color.

Value: the value for an attribute, like “red” for “color” or “12px” for “font-size”.

Web Development Skills – Part A

64

HTML Resources

Glitch
www.Glitch.com

CodePen
https://codepen.io

W3 Schools - HTML
https://www.w3schools.com/html

Mozilla Development - HTML
https://developer.mozilla.org/en-US/docs/Learn/HTML/Introduction_to_HTML

HTML Cheat Sheet - A Simple Guide to HTML
http://www.simplehtmlguide.com/cheatsheet.php

Beginner's Guide To HTML
https://www.beginnersguidetohtml.com

HTML Crash Course For Absolute Beginners - YouTube
https://www.youtube.com/watch?v=UB1O30fR-EE

Get HTML Color Codes
https://htmlcolorcodes.com

HTML Tags Ordered Alphabetically
https://www.w3schools.com/tags

HTML CheatSheet
https://htmlcheatsheet.com/

HTML Templates
https://html5-templates.com/

HTML Quick Tutorials
http://www.htmlquick.com

Exercises & Breakouts sourced from W3 Schools, Mozilla Development & HTML
Quick.

Web Development Skills – Part A

65

Section 2

Cascading Style Sheets

Web Development Skills – Part A

66

Contents

Introduction to CSS 68

• What is CSS
• History
• Background
• CSS example I
• Reflection exercise

CSS Structure 72

• Structure
• How does CSS affect HTML?
• How does CSS work?
• How to apply your CSS to your HTML
• CSS Example II
• CSS syntax
• CSS declarations
• Beyond syntax: make CSS readable
• Reflection exercise

Selectors 82

• Introduction to selectors
• Different types of selectors
• Simple selectors
• Pseudo-classes and pseudo-elements

CSS Units 86

• CSS units
• Reflection exercise

Cascade 89

The Box Model 90

• The Box model

Styling Text 92

• Font properties - style, font weight
• Text properties - colour, text-align, vertical-align
• Text layout - alignment and line height
• Reflection exercise

Web Development Skills – Part A

67

Styling boxes 98

• CSS outline
• Styling boxes overview
• Outline colour
• Outline width
• Outline - shorthand property
• Outline offset

CSS layout 103

• Overview of CSS layout
• Normal flow
• Display property
• Flexbox
• Grid layout

Responsive Web Design 108

• Introduction
• The best experience for all users

Breakout Exercises 110

• Box model
• Business card
• Typesetting a school homepage
• Creating fancy letter headed paper
• A fancy box
• Webpage layout

CSS Glossary 124

CSS Resources 125

Web Development Skills – Part A

68

Introduction to CSS

What is CSS?

CSS (Cascading Style Sheets) is a language that describes the style of an HTML document.

CSS describes how HTML elements should be displayed.

• CSS stands for Cascading Style Sheets.

• CSS describes how HTML elements are to be displayed on screen, paper, or in other

media.

• CSS saves a lot of work. It can control the layout of multiple web pages all at once.

• External stylesheets are stored in CSS files.

History

CSS was first developed in 1997 as a way for web developers to define the visual

appearance of the web pages that they were creating. It was intended to allow web

professionals to separate the content and structure of a website's code from the visual

design, something that had not been possible prior to this time.

The separation of structure and style allows HTML to perform more of its original function,

the markup of content, without having to worry about the design and layout of the page itself,

something commonly known as the "look and feel" of the page.

Web Development Skills – Part A

69

CSS didn't gain in popularity until around 2000 when web browsers began using more than

the basic font and colour aspects of this markup language. As CSS continues to evolve and

new styles are introduced, web browsers have begun to implement modules that bring new

CSS support into those browsers and give web designers powerful new styling tools to work

with.

The Schematic of the evolution of CSS from 1 to 3

https://goo.gl/2cwT1I

Background

HTML was NEVER intended to contain tags for formatting a web page. HTML was created

to describe the content of a web page, like:

<h1>This is a heading</h1>

<p>This is a paragraph.</p>

Web Development Skills – Part A

70

When tags like , and colour attributes were added to the HTML 3.2 specification, it

created huge problems for web developers. Development of large websites, where fonts and

colour information were added to every single page, became a long and expensive process.

To solve this problem, the World Wide Web Consortium (W3C) created CSS. CSS removed

the style formatting from the HTML page.

The style definitions are normally saved in external .css files. With an external stylesheet file,

you can change the look of an entire website by changing just one file!

CSS Example
The CSS Zen Garden is a World Wide Web development resource "built to demonstrate

what can be accomplished visually through CSS-based design." Style sheets contributed by

designers from around the world are used to change the visual presentation of a single

HTML file, producing hundreds of different designs.

Explore the CSS Zen Garden example files which are supplied - HTML and CSS file. Visit

the CSS zen website to view different designs. Clicking on any one will load the style sheet

into this very page. The HTML remains the same, the only thing that has changed is the

external CSS file. A demonstration of what can be accomplished through CSS-based design.

http://www.csszengarden.com/

Web Development Skills – Part A

71

Reflection

Reflect on what you have learned about CSS so far.

Use the space below to write five things about CSS.

1

2

3

4

5

Web Development Skills – Part A

72

CSS Structure
Structure
CSS is a language for specifying how documents are presented to users - how they are

styled, laid out, etc.

A document is usually a text file structured using a markup language - HTML is the most

common markup language, but you will also come across other markup languages such

as SVG or XML.

Presenting a document to a user means converting it into a usable form for your

audience. Browsers, like Firefox, Chrome or Internet Explorer, are designed to present

documents visually, for example, on a computer screen, projector or printer.

How does CSS affect HTML?
Web browsers apply CSS rules to a document to affect how they are displayed. A CSS rule

is formed from:

• A set of properties, which have values set to update how the HTML content is

displayed, for example, the element's width is 50% of its parent element, and its

background to be red.

• A selector, which selects the element(s) you want to apply the updated property

values to. For example, the application a CSS rule to all the paragraphs in a HTML

document.

A set of CSS rules contained within a stylesheet determines how a webpage should look.

Web Development Skills – Part A

73

CSS Example II
Open the two files for this exercise in the folder called Structure. The first rule starts with

an h1 selector, which means that it will apply its property values to the <h1> element. It

contains three properties and their values.

1. The first one sets the text colour to blue.

2. The second sets the background colour to yellow.

3. The third one puts a border around the header that is 1 pixel wide, solid (not dotted,

or dashed, etc.), and coloured black.

The second rule starts with a p selector, which means that it will apply its property values to

the <p> element. It contains one declaration, which sets the text colour to red.

In a web browser, the code above would produce the following output:

How does CSS work?
When a browser displays a document, it must combine the document's content with its style

information. It processes the document in two stages:

1. The browser converts HTML and CSS into the DOM (Document Object Model). The

DOM represents the document in the computer's memory. It combines the

document's content with its style.

2. The browser displays the contents of the DOM.

Web Development Skills – Part A

74

How to apply your CSS to your HTML
There are three different ways to apply CSS to an HTML document that you'll commonly

come across, some more useful than others. There are three ways of inserting a style sheet:

• External style sheet

• Internal style sheet

• Inline style

External stylesheet
You've already seen external stylesheets previously, but not by that name. An external

stylesheet is when you have your CSS written in a separate file with a .css extension, and

you reference it from an HTML <link> element. The HTML file looks something like this:

And the CSS file:

Web Development Skills – Part A

75

This method is arguably the best, as you can use one stylesheet to style multiple

documents.

Internal stylesheet
An internal stylesheet is where you don't have an external CSS file, but instead place your

CSS inside a <style> element, contained inside the HTML head. So the HTML would look

like this:

This can be useful in some circumstances (maybe you're working with a content

management system where you can't modify the CSS files directly), but it isn't quite as

Web Development Skills – Part A

76

efficient as external stylesheets - in a website, the CSS would need to be repeated across

every page.

Inline styles
Inline styles are CSS declarations that affect one element only, contained within a style

attribute:

The only time you might have to resort to using inline styles is when your working

environment is really restrictive (perhaps your CMS only allows you to edit the HTML body).

CSS syntax
At its most basic level, CSS consists of two building blocks:

Properties: Human-readable identifiers that indicate which stylistic features (e.g.

font, width, background colour) you want to change.

Values: Each specified property is given a value, which indicates how you want to

change those stylistic features (e.g. the font, width or background colour).

A property paired with a value is called a CSS declaration. CSS declarations are put

within CSS Declaration Blocks. CSS declaration blocks are paired with selectors to

produce CSS Rulesets (or CSS Rules).

Web Development Skills – Part A

77

And the CSS file:

Web Development Skills – Part A

78

CSS declarations
Setting CSS properties to specific values is the core function of the CSS language. The CSS

engine calculates which declarations apply to every single element of a page in order to

appropriately lay it out and style it. The property and value in each pair is separated by a

colon (:). There are more than 300 different properties in CSS and nearly an infinite number

of different values.

CSS declaration blocks

Declarations are grouped in blocks, with each set of declarations being wrapped by opening

curly brackets { and a closing one }.

Each declaration contained inside a declaration block has to be separated by a semi-colon ;

otherwise the code won't work (or will at least give unexpected results). The last

Web Development Skills – Part A

79

declaration of a block doesn't need to be terminated by a semi-colon, though it is often

considered good style to do so.

CSS selectors and rules

We are missing one part of the puzzle - we need to discuss how to tell our declaration blocks

which elements they should be applied to. This is done by prefixing each declaration block

with a selector — a pattern that matches some elements on the page. The associated

declarations will be applied to those elements only. The selector plus the declaration block is

called a ruleset or a rule.

Web Development Skills – Part A

80

Beyond syntax: make CSS readable
There are some good tips worth knowing to make your CSS code easier to use and

maintain.

White space
White space means actual spaces, tabs and new lines. You can add white space to make

your stylesheets more readable. In the same manner as HTML, the browser tends to ignore

much of the whitespace inside your CSS; a lot of the whitespace is just there to aid

readability.

Comments
As with HTML, you are encouraged to make comments in your CSS, to help you understand

how your code works when coming back to it after several months, and to help others

understand it. Comments are also useful for temporarily commenting out certain parts of the

code for testing purposes, for example if you are trying to find which part of your code is

causing an error. Comments in CSS begin with /* and end with */.

Web Development Skills – Part A

81

Reflection

Reflect on what you have learned about how CSS works.

Use the space below

Web Development Skills – Part A

82

Introduction to Selectors

To recap, selectors are one part of a CSS rule and come just before CSS declaration blocks.

Different types of selectors
Selectors can be divided into the following categories:

• Simple selectors: Match one or more elements based on element type, class, or id.

• Attribute selectors: Match one or more elements based on their attributes/attribute

values.

• Pseudo-classes: Match one or more elements that exist in a certain state, such as an

element that is being hovered over by the mouse pointer, or a checkbox that is

currently disabled or checked, or an element that is the first child of its parent in the

DOM tree.

• Pseudo-elements: Match one or more parts of content that are in a certain position in

relation to an element, for example the first word of each paragraph, or generated

content appearing just before an element.

• Combinators: These are not exactly selectors themselves, but ways of combining two

or more selectors in useful ways for very specific selections. So for example, you

could select only paragraphs that are direct descendants of divs, or paragraphs that

come directly after headings.

Web Development Skills – Part A

83

• Multiple selectors: Again, these are not separate selectors; the idea is that you can

put multiple selectors on the same CSS rule, separated by commas, to apply a single

set of declarations to all the elements selected by those selectors.

Simple selectors
Type selectors /element selectors
This selector is just a case-insensitive match between the selector name and a given HTML

element name. This is the simplest way to target all elements of a given type. Let's take a

look at an example:

 View the example above (HTML & CSS) in folder supplied.

Class selectors
The class selector consists of a dot, '.', followed by a class name. A class name is any value,

without spaces, placed within an HTML class attribute. It is up to you to choose a name for

the class. It is also noteworthy that multiple elements in a document can have the same

class value, and a single element can have multiple class names separated by white space.

 View the example above (HTML & CSS) in folder supplied.

ID selectors

The ID selector consists of a hash/pound symbol (#), followed by the ID name of a given

element. Any element can have a unique ID name set with the id attribute. It is up to you to

choose an ID name. It's the most efficient way to select a single element.

 View the example above (HTML & CSS) in folder supplied.

Web Development Skills – Part A

84

 CSS Selectors Video - https://youtu.be/viJJoo8uJuY

Pseudo-classes and pseudo-elements

Pseudo-classes

A CSS pseudo-class is a keyword added to the end of a selector, preceded by a colon (:),

which is used to specify that you want to style the selected element but only when it is in a

certain state. For example, you might want to style a link element only when it is being

hovered over by the mouse pointer, or a checkbox when it is disabled or checked. For

example:

• :active

• :checked

• :default

• :dir

• :disabled

• :empty

• :enabled

Web Development Skills – Part A

85

• :first

• :first-child

We will look into every pseudo-class right now but here is a simple example.

 View the example files (HTML & CSS) in folder supplied.

Pseudo-elements
Pseudo-elements are very much like pseudo-classes, but they have differences. They are

keywords, this time preceded by two colons :: , that can be added to the end of selectors to

select a certain part of an element.

• ::after

• ::before

• ::first-letter

• ::first-line

• ::selection

• ::backdrop

They all have some very specific behaviours and interesting features.

 View the example above (HTML & CSS) in folder supplied.

Web Development Skills – Part A

86

CSS Units

• CSS has several different units for expressing a length.

• Many CSS properties take "length" values, such as width, margin, padding, font-size,

etc.

• Length is a number followed by a length unit, such as 10px, 2em, etc.

• A whitespace cannot appear between the number and the unit. However, if the value

is 0, the unit can be omitted.

• For some CSS properties, negative lengths are allowed.

• There are two types of length units: absolute and relative.

Absolute Lengths

The absolute length units are fixed and a length expressed in any of these will appear as

exactly that size.

Absolute length units are not recommended for use on screen, because screen sizes vary so

much. However, they can be used if the output medium is known, such as for print layout.

Unit Description

cm centimetres

mm millimetres

in inches (1in = 96px = 2.54cm)

px * pixels (1px = 1/96th of 1in)

Web Development Skills – Part A

87

pt points (1pt = 1/72 of 1in)

pc picas (1pc = 12 pt)

Relative Lengths
Relative length units specify a length relative to another length property. Relative length units

scales better between different rendering mediums.

Unit Description

em Relative to the font-size of the element (2em means 2 times the size of the
current font)

ex Relative to the x-height of the current font (rarely used)

ch Relative to width of the "0" (zero)

rem Relative to font-size of the root element

vw Relative to 1% of the width of the viewport*

vh Relative to 1% of the height of the viewport*

vmin Relative to 1% of viewport's* smaller dimension

vmax Relative to 1% of viewport's* larger dimension

% Relative to the parent element

Web Development Skills – Part A

88

Reflection

Reflect on what you have learned about CSS units.

Use the space below

Web Development Skills – Part A

89

Cascade
At some point in your work, you'll find yourself in the situation where multiple CSS rules will

have selectors matching the same element. In such cases, which CSS rule "wins", and ends

up being the one that is finally applied to the element? This is controlled by a mechanism

called the Cascade; this is also related to inheritance (elements will take some property

values from their parents, but not others).

The Cascade
CSS is an abbreviation for Cascading Style Sheets, which indicates that the notion of the

cascade is important. At its most basic level, it indicates that the order of CSS rules matter,

but it's more complex than that. What selectors win out in the cascade depends on three

factors (these are listed in order of weight - earlier ones will overrule later ones):

• Importance

• Specificity

• Source order

Importance
In CSS, there is a special piece of syntax you can use to make sure that a certain

declaration will always win over all others: !important.

Web Development Skills – Part A

90

The Box Model
The CSS box model is the foundation of layout on the Web - each element is represented as

a rectangular box, with the box's content, padding, border, and margin built up around one

another like the layers of an onion. As a browser renders the web page layout, it works out

what styles are applied to the content of each box, how big the surrounding onion layers are,

and where the boxes sit in relation to one another. Before understanding how to create CSS

layouts, you need to understand the box model.

All HTML elements can be considered as boxes. In CSS, the term "box model" is used when

talking about design and layout.

The CSS box model is essentially a box that wraps around every HTML element. It consists

of: margins, borders, padding, and the actual content. The image below illustrates the box

model:

Explanation of the different parts:

• Content - The content of the box, where text and images appear.

• Padding - Clears an area around the content. The padding is transparent.

• Border - A border that goes around the padding and content.

• Margin - Clears an area outside the border. The margin is transparent.

The box model allows us to add a border around elements, and to define space between

elements.

Web Development Skills – Part A

91

Web Development Skills – Part A

92

Styling Text
As you'll have already experienced in your work with HTML and CSS, text inside an element

is laid out inside the element's content box. It starts at the top left of the content area, and

flows towards the end of the line. Once it reaches the end, it goes down to the next line and

continues, then the next line, until all the content has been placed in the box. Text content

effectively behaves like a series of inline elements, being laid out on lines adjacent to one

another, and not creating line breaks until the end of the line is reached, or unless you force

a line break manually using the
 element.

The CSS properties used to style text generally fall into two categories, which we'll look at

separately:

Font styles: Properties that affect the font that is applied to the text, affecting what

font is applied, how big it is, whether it is bold, italic, etc.

Text layout styles: Properties that affect the spacing and other layout features of the

text, allowing manipulation of, for example, the space between lines and letters, and

how the text is aligned within the content box.

Font Properties
The CSS font properties define the font family, weight, size, and the style of a text.

The font-family Property
The font-family property specifies the font for an element. The font-family property can hold

several font names as a second choice. If the browser does not support the first font, it tries

the next font.

There are two types of font family names:

• family-name - The name of a font-family, like "times", "courier", "arial", etc.

• generic-family - The name of a generic-family, like "serif", "sans-serif", "cursive",

"fantasy", "monospace".

Web Development Skills – Part A

93

Start with the font you want, and always end with a generic family, to let the browser pick a

similar font in the generic family, if no other fonts are available.

Font style, font weight, text transform, and text decoration

CSS provides four common properties to alter the visual weight/emphasis of text:

• font-style: Used to turn italic text on and off. Possible values are as follows (you'll

rarely use this, unless you want to turn some italic styling off for some reason):

o normal: Sets the text to the normal font (turns existing italics off.)

o italic: Sets the text to use the italic version of the font if available; if not

available, it will simulate italics with oblique instead.

o oblique: Sets the text to use a simulated version of an italic font, created

by slanting the normal version.

• font-weight: Sets how bold the text is. This has many values available in case you

have many font variants available (such as -light, -normal, -bold, -extrabold, -black,

etc.), but realistically you'll rarely use any of them except for normal and bold:

o normal, bold: Normal and bold font weight

o lighter, bolder: Sets the current element's boldness to be one step lighter or

heavier than its parent element's boldness.

o 100–900: Numeric boldness values that provide finer grained control than the

above keywords, if needed.

• text-transform: Allows you to set your font to be transformed. Values include:

o none: Prevents any transformation.

o uppercase: Transforms ALL TEXT TO CAPITALS.

o lowercase: Transforms all text to lower case.

o capitalise: Transforms all words to Have The First Letter Capitalised.

Web Development Skills – Part A

94

o full-width: Transforms all glyphs to be written inside a fixed-width square,

similar to a monospace font, allowing aligning of e.g. Latin characters along

with Asian language glyphs (like Chinese, Japanese, Korean.)

• text-decoration: Sets/unsets text decorations on fonts (you'll mainly use this to

unset the default underline on links when styling them.) Available values are:

o none: unsets any text decorations already present.

o underline: Underlines the text.

o overline: Gives the text an overline.

o line-through: Puts a strikethrough over the text.

• The font-size Property: The font-size property sets the size of a font.

Web Development Skills – Part A

95

Text Properties
The color Property
The colour property specifies the colour of text. Use a background colour combined with a

text colour that makes the text easy to read.

The text-align Property
The text-align property specifies the horizontal alignment of text in an element.

The vertical-align Property
The vertical-align property sets the vertical alignment of an element.

alue Description

baseline The element is aligned with the baseline of the parent. This is default

length Raises or lowers an element by the specified length. Negative values
are allowed.

% Raises or lowers an element in a percent of the "line-height" property.
Negative values are allowed

sub The element is aligned with the subscript baseline of the parent

super The element is aligned with the superscript baseline of the parent

top The element is aligned with the top of the tallest element on the line

text-top The element is aligned with the top of the parent element's font

middle The element is placed in the middle of the parent element

bottom The element is aligned with the lowest element on the line

text-
bottom

The element is aligned with the bottom of the parent element's font

Web Development Skills – Part A

96

Text layout
With basic font properties out the way, let's now have a look at properties we can use to

affect text layout.

Text alignment
The text-align property is used to control how text is aligned within its containing content box.

The available values are as follows, and work in pretty much the same way as they do in a

regular word processor application:

o left: Left justifies the text.

o right: Right justifies the text.

o center: Centers the text.

o justify: Makes the text spread out, varying the gaps in between the words so that

all lines of text are the same width. You need to use this carefully — it can look

terrible, especially when applied to a paragraph with lots of long words in it. If you

are going to use this, you should also think about using something else along

with it, such as hyphens, to break some of the longer words across lines.

Line height
The line-height property sets the height of each line of text — this can take most length and

size units, but can also take a unitless value, which acts as a multiplier and is generally

considered the best option — the font-size is multiplied to get the line-height. Body text

generally looks nicer and is easier to read when the lines are spaced apart; the

recommended line height is around 1.5–2 (double spaced.) So to set our lines of text to 1.5

times the height of the font, you'd use this:

initial Sets this property to its default value

inherit Inherits this property from its parent element

Web Development Skills – Part A

97

Reflection
Reflect on what you have learned about CSS so far.

Use the space below to write five things about styling text:

1.

2.

3.

4.

5.

Web Development Skills – Part A

98

Styling boxes

CSS Outline

An outline is a line that is drawn around elements, OUTSIDE the borders, to make the

element "stand out".

Styling boxes overview
CSS has the following outline properties:

• outline-style

• outline-color

• outline-width

• outline-offset

• outline

Web Development Skills – Part A

99

Outline Style
The outline-style property specifies the style of the outline, and can have one of the following

values:

• dotted - Defines a dotted outline

• dashed - Defines a dashed outline

• solid - Defines a solid outline

• double - Defines a double outline

• groove - Defines a 3D grooved outline

• ridge - Defines a 3D ridged outline

• inset - Defines a 3D inset outline

• outset - Defines a 3D outset outline

• none - Defines no outline

• hidden - Defines a hidden outline

The following example shows the different outline-style values:

 Open the files above (HTML & CSS) in folder supplied.

Web Development Skills – Part A

100

Outline Colour
The outline-colour property is used to set the colour of the outline.

The colour can be set by:

• name - specify a colour name, like "red"
• RGB - specify a RGB value, like "rgb(255,0,0)"

• Hex - specify a hex value, like "#ff0000"
• invert - performs a colour inversion (which ensures that the outline is visible,

regardless of colour background)

The following example shows some different outlines with different colours. Also notice that

these elements also have a thin black border inside the outline:

 Open the files above (HTML & CSS) in folder supplied.

Web Development Skills – Part A

101

Outline Width
The outline-width property specifies the width of the outline, and can have one of the

following values:

• thin (typically 1px)

• medium (typically 3px)

• thick (typically 5px)

• A specific size (in px, pt, cm, em, etc)

The following example shows some outlines with different widths:

 Open the files above (HTML & CSS) in folder supplied.

Web Development Skills – Part A

102

Outline - Shorthand property
The outline property is a shorthand property for setting the following individual outline

properties:

• outline-width

• outline-style (required)

• outline-colour

The outline property is specified as one, two, or three values from the list above. The order

of the values does not matter.

The following example shows some outlines specified with the shorthand outline property:

 Open the files above (HTML & CSS) in folder supplied.

Outline Offset
The outline-offset property adds space between an outline and the edge/border of an

element. The space between an element and its outline is transparent.

The following example specifies an outline 15px outside the border edge:

 Open the files above (HTML & CSS) in folder supplied.

Web Development Skills – Part A

103

CSS layout

CSS layout overview
CSS page layout techniques allow us to take elements contained in a web page and control

where they are positioned relative to their default position in normal layout flow, the other

elements around them, their parent container, or the main viewport/window.

Each technique has its uses, advantages, and disadvantages, and no technique is designed

to be used in isolation. By understanding what each method is designed for you will be in a

good place to understand which is the best layout tool for each task.

Normal Flow
Normal flow is how the browser lays out HTML pages by default when you do nothing to

control page layout.

Web Development Skills – Part A

104

Note here how the HTML is displayed in the same order in which it appears in the source

code, with elements stacked up on top of one another — the first paragraph, followed by the

unordered list, followed by the second paragraph.

The elements that appear one below the other are described as block elements, in contrast

to inline elements, which appear one beside the other, like the individual words in a

paragraph.

When you use CSS to create a layout, you are moving the elements away from the normal

flow, but for many of the elements on your page the normal flow will create exactly the layout

you need. This is why starting with a well-structured HTML document is so important, as you

can then work with the way things are laid out by default rather than fighting against it.

The methods that can change how elements are laid out in CSS are as follows:

• The display property - Standard values such as block, inline or inline-block can

change how elements behave in normal flow. We then have entire layout methods

that are switched on via a value of display, for example CSS Grid and Flexbox.

• Floats - Applying a float value such as left can cause block level elements to wrap

alongside one side of an element, like the way images sometimes have text floating

around them in magazine layouts.

• The position property - Allows you to precisely control the placement of boxes

inside other boxes. static positioning is the default in normal flow, but you can cause

elements to be laid out differently using other values.

Web Development Skills – Part A

105

• Table layout - features designed for styling the parts of an HTML table can be used

on non-table elements using display: table and associated properties.

• Multi-column layout - The multi-column layout properties can cause the content of a

block to layout in columns, as you might see in a newspaper.

The display property
This property allows us to change the default way something displays. Everything in normal

flow has a value of display, used as the default way that elements they are set on behave.

For example, the fact that paragraphs in English display one below the other is due to the

fact that they are styled with display: block. If you create a link around some text inside a

paragraph, that link remains inline with the rest of the text, and doesn’t break onto a new

line. This is because the <a> element is display: inline by default.

You can change this default display behaviour. For example, the element is display:

block by default, meaning that list items display one below the other in our English

document. If we change the display value to inline they now display next to each other, as

words would do in a sentence. The fact that you can change the value of display for any

element means that you can pick HTML elements for their semantic meaning, without being

concerned about how they will look. The way they look is something that you can change.

In addition to being able to change the default presentation by turning an item

from block to inline and vice versa, there are some bigger layout methods that start out as a

value of display. However when using these you will generally need to invoke additional

properties. The two values most important for our purposes when discussing layout

are display: flex and display: grid.

Web Development Skills – Part A

106

Flexbox
Flexbox is the short name for the Flexible Box Layout Module, designed to make it easy for

us to lay things out in one dimension - either as a row or as a column. To use flexbox, you

apply display: flex to the parent element of the elements you want to lay out; all its direct

children then become flex items.

The HTML markup in the example below gives us a containing element, with a class

of wrapper, inside which are three <div> elements. By default these would display as block

elements, below one another, in our English language document.

However, if we add display: flex to the parent, the three items now arrange themselves into

columns. This is due to them becoming flex items and using some initial values that flexbox

gives them. They are displayed as a row, because the initial value of flex-direction is row.

They all appear to stretch to the height of the tallest item, because the initial value of

the align-items property is stretch. This means that the items stretch to the height of the flex

container, which in this case is defined by the tallest item. The items all line up at the start of

the container, leaving any extra space at the end of the row.

 Open the Flexbox sample files above (HTML & CSS) in folder supplied.

In addition to the above properties that can be applied to the flex container, there are

properties that can be applied to the flex items. These properties, among other things, can

change the way that the items flex, enabling them to expand and contract to fit into the

available space.

Web Development Skills – Part A

107

Grid Layout
While flexbox is designed for one-dimensional layout, Grid Layout is designed for two

dimensions — lining things up in rows and columns.

Once again, you can switch on Grid Layout with a specific value of display — display: grid.

The below example uses similar markup to the flex example, with a container and some

child elements. In addition to using display: grid, we are also defining some row and column

tracks on the parent using the grid-template-rows and grid-template-columns properties

respectively. We've defined three columns each of 1fr and two rows of 100px. I don’t need to

put any rules on the child elements; they are automatically placed into the cells our grid has

created.

 Open the Grid 1 example above (HTML & CSS) in folder supplied.

Once you have a grid, you can explicitly place your items on it, rather than relying on the

auto-placement behaviour seen above. In the second example below we have defined the

same grid, but this time with three child items. We've set the start and end line of each item

using the grid-column and grid-row properties. This causes the items to span multiple tracks.

 Open the Grid 2 example above (HTML & CSS) in folder supplied.

There are other layout methods, which are less important for the main layout structures of

your page but can still help you achieve specific tasks. These include floats and positioning.

Web Development Skills – Part A

108

Responsive Web Design

Introduction
• Responsive web design makes your web page look good on all devices.

• Responsive web design uses only HTML and CSS.

• Responsive web design is not a program or a JavaScript.

The Best Experience For All Users
Websites can be viewed using many different devices: desktops, tablets, and phones. Your

web page should look good, and be easy to use, regardless of the device.

Web pages should not leave out information to fit smaller devices, but rather adapt its

content to fit any device:

Desktop

Web Development Skills – Part A

109

Tablet

Phone

It is called responsive web design when you use CSS and HTML to resize, hide, shrink,

enlarge, or move the content to make it look good on any screen.

Web Development Skills – Part A

110

 Breakout Exercises

Sourced from

Breakout A - Box Model
In the editable sample below, we have a set of three boxes, all of which contain text content

and have been styled to span the whole of the body width. They are represented

by <header>, <main>, and <footer> elements in the markup. We'd like you to concentrate

on the bottom three CSS rules — the ones that target each box individually — and try the

following:

1. Have a look at the box model of each individual element on the page by opening up

the browser developer tools and clicking on the elements in the DOM inspector.

Each browser has a box model viewer that shows exactly what margin, border and

padding is applied to each box, how big the content box is, and the total space the

element takes up.

2. Set some margin-bottom on the <main> element, say 20px. Now set some margin-

top on the <footer> element, say 15px. Note how the 2nd one of these actions

Web Development Skills – Part A

111

makes no difference to the layout — this shows margin collapsing in action; the

smaller margin's effective width is reduced to 0, leaving only the larger margin.

3. Set a margin of 30px and a padding of 30px on every side of the <main> element —

note how the space around the element (the margin) and the space between the

border and the content (the padding) both increase, causing the actual content to

take up a smaller amount of space. Again, check this with the browser developer

tools.

4. Set a larger border on all sides of the <main> element, say 40px, and notice how this

takes space away from the content rather than the margin or padding. You could do

this by setting a complete new set of values for the width, style and color with

the border property, e.g. 60px dashed red, but since the properties are already set in

a previous rule, you could just set a new border-width.

5. By default, the content width is set to 100% of the available space (after the margin,

border, and padding have taken their share) — if you change the browser window

width, the boxes will grow and shrink to stay contained inside the example output

window. The height of the content will default to the height of the content inside it.

6. Try setting a new width and height on the <main> element - start with say 400px width

and 200px height - and observe the effect. You'll notice that the width no longer

changes as the browser window is resized.

7. Try setting a percentage width on the <main> element instead - say 60% width - and

observe the effect. You should see that the width now changes again as the browser

window is resized. Remove the <main> element's height setting for now.

8. Try setting your <main> element's padding and margin to be 5% on all sides, and

observe the result. If you use your browser developer tools to look at the width of the

example output window and compare that to the width of the margin/padding, you'll

see that this 5% means "5% of the containing element's width." So as the size of the

example output window increases, so does the padding/margins.

Web Development Skills – Part A

112

9. Margins can accept negative values, which can be used to cause element boxes to

overlap. Try setting margin-top: -50px; on the <main> element to see the effect.

Breakout B - Business Card Exercise
You have been provided with some raw HTML and an image, and need to write the

necessary CSS to style this into a nifty little online business card, which can perhaps double

as a gamer card or social media profile. The following sections describe what you need to

do.

Basic setup:
1. First of all, create a new file in the same directory as your HTML and image files. Call

it something really imaginative like style.css.

2. Link your CSS to your HTML file via a <link> element.

3. The first two rulesets in the CSS resource file are yours, for FREE! After you've

finished rejoicing at your good fortune, copy and paste them into the top of your new

CSS file. Use them as a test to make sure your CSS is properly applied to your

HTML.

4. Above the two rules, add a CSS comment with some text inside it to indicate that this

is a set of general styles for the overall page. "General page styles" would do. Also

add three more comments at the bottom of the CSS file to indicate styles specific to

the setup of the card container, styles specific to the header and footer, and styles

specific to the main business card contents. From now on, subsequent styles added

to the stylesheet should be organized in an appropriate place.

5. Taking care of the selectors and rulesets provided in the CSS resource file.

6. Next up, we'd like you to look at the four selectors, and calculate the specificity for

each one. Write these down somewhere where they can be found later on, such as in

a comment at the top of your CSS.

Web Development Skills – Part A

113

7. Now it's time to put the right selector on the right rule set! You've got four pairs of

selector and ruleset to match in your CSS resources. Do this now, and add them to

your CSS file.

You need to:
8. Give the main card container a fixed width/height, solid background color, border,

and border-radius (rounded corners!), amongst other things.

9. Give the header a background gradient that goes from darker to lighter, plus rounded

corners that fit in with the rounded corners set on the main card container.

10. Give the footer a background gradient that goes from lighter to darker, plus rounded

corners that fit in with the rounded corners set on the main card container.

11. Float the image to the right so that it sticks to the right hand side of the main

business card contents, and give it a max-height of 100% (a clever trick that ensures

that it will grow/shrink to stay the same height as its parent container, regardless of

what height it becomes).

12. Beware! There are two errors in the provided rulesets. Using any technique that you

know, track these down and fix them before moving on.

13. New rulesets you need to write:

a. Write a ruleset that targets both the card header, and card footer, giving

them both a computed total height of 50px (including a content height of

30px and padding of 10px on all sides.) But express it in ems.

b. The default margin applied to the <h2> and <p> elements by the browser

will interfere with our design, so write a rule that targets all these elements

and sets their margin to 0.

c. To stop the image from spilling out of the main business card content

(the <article>element), we need to give it a specific height. Set

the <article>'s height to 120px, but expressed in ems. Also give it a

Web Development Skills – Part A

114

background colour of semi-transparent black, resulting in a slightly darker

shade that lets the background red colour shine through a bit too.

d. Write a ruleset that gives the <h2> an effective font size of 20px (but

expressed in ems) and an appropriate line height to place it in the centre of

the header's content box. Recall from earlier that the content box height

should be 30px - this gives you all the numbers you need to calculate the

line height.

e. Write a ruleset that gives the <p> inside the footer an effective font size of

15px (but expressed in ems) and an appropriate line height to place it in

the centre of the footer's content box. Recall from earlier that the content

box height should be 30px — this gives you all the numbers you need to

calculate the line height.

f. As a last little touch, give the paragraph inside the <article> an

appropriate padding value so that its left edge lines up with the <h2> and

footer paragraph, and set its colour to be fairly light so it is easy to read.

Roughwork.

Use the space below

Web Development Skills – Part A

115

Breakout C - Typesetting a Community School Homepage
You have been provided with some raw HTML for the homepage of an imaginary School,

plus some CSS that styles the page into a two column layout and provides some other

rudimentary styling. You are to write your CSS additions below the comment at the bottom of

the CSS file, to make sure it is easy to mark the bits you have done.

Fonts:
• First of all, download a couple of free-to-use fonts. Because this is a School, the fonts

should be chosen to give the page a fairly serious, formal, trustworthy feel — a serif

site-wide font for the general text body, coupled with sans-serif or slab serif for the

headings might be nice.

• Use a suitable service to generate bulletproof @font-face code for these two fonts.

• Apply your body font to the whole page, and your heading font to your headings.

General text styling:

• Give the page a site-wide font-size of 10px.

• Give your headings and other element types appropriate font-sizes defined using a

suitable relative unit.

• Give your body text a suitable line-height.

• Center your top level heading on the page.

• Give your headings a little bit of letter-spacing to make them not too too squashed,

and allow the letters to breathe a bit.

• Give your body text some letter-spacing and word-spacing, as appropriate.

• Give the first paragraph after each heading in the <section> a little bit of text-

indentation, say 20px.

Links:

• Give the link, visited, focus, and hover states some colors that go with the color of the

horizontal bars at the top and bottom of the page.

• Make it so that links are underlined by default, but when you hover or focus them, the

underline disappears.

• Remove the default focus outline from ALL the links on the page.

Web Development Skills – Part A

116

• Give the active state a noticeably different styling so it stands out nicely, but make it

still fit in with the overall page design.

• Make it so that external links have the external link icon inserted next to them.

Lists:

• Make sure the spacing of your lists and list items works well with the styling of the

overall page. Each list item should have the same line-height as a paragraph line,

and each list should have the same spacing at its top and bottom as you have

between paragraphs.

• Give your list items a nice bullet, appropriate for the design of the page. It is up to

you whether you choose a custom bullet image or something else.

Navigation menu:

• Style your navigation menu so that it has an appropriate look for the look and feel for

the page.

Hints and tips

• You don't need to edit the HTML in any way for this exercise.

• You don't necessarily have to make the nav menu look like buttons, but it needs to

be a bit taller so that it doesn't look silly on the side of the page; also remember that

you need to make this one a vertical nav menu.

The following screenshot shows an example of what the finished design could look like:

Web Development Skills – Part A

117

Roughwork.

Use the space below

Breakout D - Creating fancy letter headed paper

Web Development Skills – Part A

118

You have been given the files needed to create a letter headed paper template. You just

need to put the files together. To get there, you need to:

The main letter
• Apply the CSS to the HTML.

• Add a background declaration to the letter that:

• Fixes the top image to the top of the letter

• Fixes the bottom image to the bottom of the letter

• Adds a semi-transparent gradient over the top of both of the previous backgrounds

that gives the letter a bit of texture. Make it slightly dark right near the top and

bottom, but completely transparent for a large part of the center.

• Add another background declaration that just adds the top image to the top of the

letter, as a fall-back for browsers that don't support the previous declaration.

• Add a white background colour to the letter.

• Add a 1mm top and bottom solid border to the letter, in a colour that is inkeeping with

the rest of the colour scheme.

The logo
• To the <h1>, add the logo as a background image.

• Add a filter to the logo to give it a subtle drop shadow.

• Now comment out the filter and implement the drop shadow in a different (slightly

more cross-browser compatible) way, which still follows the shape of the round

image.

Web Development Skills – Part A

119

The following screenshot shows an example of what the finished design could look like:

Roughwork.

Use the space below

Web Development Skills – Part A

120

Breakout E - A Fancy Box
Your task is to create fancy box and explore the fun we can have with CSS.

General task
Apply the CSS to the HTML.

Styling the box
We'd like you to style the provided <p>, giving it the following:

• A reasonable width for a large button, say around 200 pixels.

• A reasonable height for a large button, cantering the text vertically in the process.

• A slight increase in font size, to around 17-18 pixel computed style. Use rems.

Write a comment about how you worked out the value.

• A base colour for the design. Give the box this colour as its background colour.

• The same colour for the text; make it readable using a black text shadow.

• A fairly subtle border radius.

• A 1-pixel solid border with a colour similar to the base colour, but a slightly darker

shade.

• A linear semi-transparent black gradient that goes toward the bottom right corner.

Make it completely transparent at the start, gradating to around 0.2 opacity by 30%

along, and remaining at the same colour until the end.

• Multiple box shadows. Give it one standard box shadow to make the box look slightly

raised off the page. The other two should be inset box shadows — a semi-

transparent white shadow near the top left and a semi-transparent black shadow

near the bottom right — to add to the nice raised 3D look of the box.

The following screenshot shows an example of what the finished design could look like:

Web Development Skills – Part A

121

Breakout F - Webpage Layout
You have been provided with some raw HTML, basic CSS, and images — now you need to

create a layout for the design, which should look just like the image below.

Basic Setup
• You can download all the required files in the folder supplied.

• Save the HTML document and stylesheet into a directory on your computer, and add

the images into a folder named images. Opening the index.html file in a browser

should give you a page with basic styling but no layout, which should look something

like the image seen below.

• This starting point has all of the content of your layout as displayed by the browser in

normal flow.

Web Development Skills – Part A

122

Your tasks
You now need to implement your layout. The tasks you need to achieve are:

1. To display the navigation items in a row, with an equal amount of space.

2. The navigation bar should scroll with the content and then become stuck at the top of

the viewport when it reaches it.

3. The image that is inside the article should have text wrapped around it.

4. The <article> and <aside> elements should display as a two column layout. The

columns should be a flexible size so that if the browser window shrinks smaller the

columns become narrower.

5. The photographs should display as a two column grid with a 1 pixel gap between the

images.

You do not need to edit the HTML in order to achieve this layout and the techniques you

should use are:

• Positioning

• Float

• Flexbox

Web Development Skills – Part A

123

• CSS Grid Layout

Roughwork.

Use the space below.

Web Development Skills – Part A

124

CSS Glossary
Please refer to W3schools A-Z guide with illustrated examples:

https://www.w3schools.com/cssref/

Web Development Skills – Part A

125

CSS Resources

Box Alignment Cheat sheet
https://rachelandrew.co.uk/css/cheatsheets/box-alignment

Everything you need to learn CSS Grid Layout
https://gridbyexample.com/

The Experimental Layout Lab
https://labs.jensimmons.com/

Grid by Example – Rachel Andrew
https://www.youtube.com/playlist?list=PLQkVA6z3dFvbnBJetfYDAF3-cG_ubgdZR

CodePen Tool
https://codepen.io

CSS Exercises
https://www.w3schools.com/css/exercise.asp?filename=exercise_margin3

W3 Schools
https://www.w3schools.com/

Mozilla Development
https://developer.mozilla.org/en-US/docs/Learn/Getting_started_with_the_web/CSS_basics

Free Code Camp
https://medium.freecodecamp.org/the-css-handbook-a-handy-guide-to-css-for-developers-
b56695917d11

Listing the most useful free online tools and resources for web developers
https://html-css-js.com/html/links/

Exercises & Breakouts sourced from W3 Schools, Mozilla Development, Free Code
Camp.

Web Development Skills – Part A

126

Section 5

UX Design

Web Development Skills – Part A

127

Contents

• UX Design 128

o What is User Experience Design?
o UX versus UI design
o What UX designers consider
o UX design is user-centred
o The user experience process
o Don Norman
o Don Norman’s Design Principles
o Don Norman on UX
o Jakob Nielsen
o Nielsen’s 10 Usability Heuristics
o Shneiderman's Golden Rules
o Reflection Exercise

• Breakout Exercise 143

• UX Resources 144

Web Development Skills – Part A

128

UX Design

What is User Experience (UX) Design?
According to the Interaction-Design.org - User experience (UX) design is the process of

creating products that provide meaningful and relevant experiences to users. This involves

the design of the entire process of acquiring and integrating the product, including aspects of

branding, design, usability, and function.

https://www.interaction-design.org/literature/topics/ux-design

Web Development Skills – Part A

129

UX Versus UI
“User Experience Design” is often used interchangeably with terms such as “User Interface

Design” and “Usability”. However, while Usability and User Interface Design are important

aspects of UX Design, they are subsets of it – UX design covers a vast array of other areas,

too. A UX designer is concerned with the entire process of acquiring and integrating a

product, including aspects of branding, design, usability and function. It is a story that begins

before the device is even in the user’s hands.

“No product is an island. A product is more than the product. It is a cohesive,
integrated set of experiences. Think through all of the stages of a product or
service – from initial intentions through final reflections, from first usage to
help, service, and maintenance. Make them all work together seamlessly.”

- Don Norman, inventor of the term “User Experience”

Products that provide great user experience (e.g., the iPhone) are thus designed with not

only the product’s consumption or use in mind but also the entire process of acquiring,

owning, and even troubleshooting it. Similarly, UX designers don’t just focus on creating

products that are usable; they concentrate on other aspects of the user experience, such as

pleasure, efficiency and fun. Consequently, there is no single definition of a good user

experience. Instead, a good user experience is one that meets a particular user’s needs in

the specific context.

What UX Designers consider - the Why, What and How
A UX designer will consider the Why, What and How of product use. The Why involves the

motivations for adopting a product, whether they relate to a task they wish to perform with it,

or to values and views associated with the ownership and use of the product. The What

addresses the things people can do with a product - its functionality. Finally, the How relates

to the design of functionality in an accessible and aesthetically pleasant way. UX designers

start with the Why before determining the What and then, finally, the How in order to create

products that users can form meaningful experiences with. In software designs, designers

must ensure the product’s “substance” comes through an existing device and offers a

seamless, fluid experience.

Web Development Skills – Part A

130

UX Design is User-Centred
Since UX design encompasses the entire user journey, it’s a multidisciplinary field – UX

designers come from a variety of backgrounds such as visual design, programming,

psychology and interaction design. Designing for human users also demands heightened

scope regarding accessibility and accommodating many potential users’ physical limitations,

such as reading small text. A UX designer’s typical tasks vary, but often include user

research, creating personas, designing wireframes and interactive prototypes as well as

testing designs. These tasks can vary greatly from one company to the next, but they always

demand designers to be the users’ advocate and keep the users’ needs at the centre

of all design and development efforts. That’s also why most UX designers work in some form

of user-centred work process, and keep channelling their best-informed efforts until they

address all of the relevant issues and user needs optimally.

Web Development Skills – Part A

131

User-Centred Design is an iterative process that takes an understanding of the users and

their context as a starting point for all design and development.

The User Experience Process
The general user experience process is pretty similar in most cases, but still we cannot say

that there is only one path that leads to the key to success. That's because we usually

encounter a lot of external factors and a wide variety of projects. For example a “Website

Project” can be totally different than a “Mobile App”. There are situations when product

Web Development Skills – Part A

132

owners ask for a proof of concept or a BETA version first, and after that want to work on

estimations and how to tackle the project.

Robert Dumitru’s Steps (www.centric.eu)

1 - Project details and product description

This first step represents the documentation part. Depending on the situation, it can be done

by the client or it can be a high-level investigation. Here we define the strong points, client

target, and platforms or other relevant information relevant to project development. We can

define specific dates and timelines regarding the project (kick-off, version beta 1.0, proof of

concept, prototypes).

2 - Product investigation
Here, we can discuss the info we got from the marketing department and how we can place

the product on the market. We discuss aspects like potential age of the user, his financial

status, IT knowledge, and field of work (banks, municipality etc.).

3 - Project analysis and use cases
Based on the information above, we can create different scenarios, and we can build so-

called “personas” - fictional characters who might use the product (for ex: manager,

employee, new user, admin etc.).

4 - Concept
Having the package ready, the next step is to create the architecture of the app, or better

said the site map. Based on this, we can start sketching the wireframes to create a better

Web Development Skills – Part A

133

view of the functionality and the components of the app (what we can have on a specific

page)

5 - Prototype
Now we can start creating a prototype based on the wireframes, so we can provide a nice

flow to the app. This should be a clickable model and emulate the general functionality. This

is a very important step for UI/UX designers who choose to skip UX and jump to the UI part.

They are sometimes successful at making a good impression on the client, but this move will

have a negative impact and slow down the overall process.

6 - The Visual
Once we have agreed on the prototype and the functionality, we can finally move to the user

interface part. This can be done easily since we already have a prototype. The artistic part

can be done with transitions and animations but also by the design approach decided upon

(Material, iOS, Flat or a combination).

7 - Testing and validating the concept
Even if it doesn’t seem to be a designer’s job, the scenarios we discussed in the beginning

force the designer to also be a tester (functionality wise and also implementation wise).

In conclusion, this small plan could change depending on the moment and the state of the

project. There are a lot of cases when the project has already started and we only need a

redesign or a face-lift, cases when the project failed once, and cases where we have a lot

restrictions (time, finances etc.). Also, concepts like Scrum/Kanban, Agile/Waterfall might

have a big impact.

Don Norman

Web Development Skills – Part A

134

Author of the watershed book The Design of Everyday Things and coined the term “User

Experience” in the early days at Apple. Don Norman was recognized as the "Guru of

Workable Technology" by Newsweek.

Don Normans Principles of Design
These principles are from Don Normans seminal book, The Design of Everyday Things.

Visibility
The more visible functions are, the more likely users will be able to know what to do next. In

contrast, when functions are out of sight, it makes them more difficult to find and know how

to use.

Feedback
Feedback is concerned with sending back information about what action has been done and

what has been accomplished, allowing the person to continue with the activity. Various kinds

of feedback are available for interaction design-audio, tactile, verbal, and combinations of

these.

Constraints
The design concept of constraining refers to determining ways of restricting the kind of user

interaction that can take place at a given moment. There are various ways this can be

achieved.

Web Development Skills – Part A

135

Mapping
This refers to the relationship between controls and their effects in the world. Nearly all

artefacts need some kind of mapping between controls and effects, whether it is a flashlight,

car, power plant, or cockpit. An example of a good mapping between control and effect is the

up and down arrows used to represent the up and down movement of the cursor,

respectively, on a computer keyboard.

Consistency
This refers to designing interfaces to have similar operations and use similar elements for

achieving similar tasks. In particular, a consistent interface is one that follows rules, such as

using the same operation to select all objects. For example, a consistent operation is using

the same input action to highlight any graphical object at the interface, such as always

clicking the left mouse button. Inconsistent interfaces, on the other hand, allow exceptions to

a rule.

Affordance
A term used to refer to an attribute of an object that allows people to know how to use it. For

example, a mouse button invites pushing (in so doing acting clicking) by the way it is

physically constrained in its plastic shell. At a very simple level, to afford means to give a

clue (Norman, 1988). When the affordances of a physical object are perceptually obvious it

is easy to know how to interact with it.

Web Development Skills – Part A

136

Don Norman on UX

https://www.youtube.com/watch?v=9BdtGjoIN4E

Jakob Nielsen

Author of the quintessential usability checklist Ten Usability Heuristics and an early

champion of usability testing, Jakob Nielsen was recognized as the "Guru of Usable Web

Pages " by the New York Times.

Ten Usability Heuristics for User Interface Design
"The 10 most general principles for interaction design. They are called 'heuristics' because

they are more in the nature of rules of thumb than specific usability guidelines."

Web Development Skills – Part A

137

These are one of the most used heuristics for User Interface Design. They were developed

by Jakob Nielsen together with Rolf Molich in the early 90's. The final set, which you see

here, was released by Nielsen in 1994.

The heuristics are explained in greater depth in this video.

https://youtu.be/hWc0Fd2AS3s

Visibility of system status
The system should always keep users informed about what is going on, through appropriate

feedback within reasonable time.

Read the full article at https://www.nngroup.com/articles/visibility-system-status/

Match between system and the real world
The system should speak the users' language, with words, phrases and concepts familiar to

the user, rather than system-oriented terms. Follow real-world conventions, making

information appear in a natural and logical order.

Read the full article at https://www.nngroup.com/articles/match-system-real-world/

Web Development Skills – Part A

138

User control and freedom
Users often choose system functions by mistake and will need a clearly marked "emergency

exit" to leave the unwanted state without having to go through an extended dialogue.

Support undo and redo.

Consistency and standards
Users should not have to wonder whether different words, situations, or actions mean the

same thing. Follow platform conventions.

Error prevention
Even better than good error messages is a careful design which prevents a problem from

occurring in the first place. Either eliminate error-prone conditions or check for them and

present users with a confirmation option before they commit to the action.

Read the full article at https://www.nngroup.com/articles/slips/

Recognition rather than recall
Minimize the user's memory load by making objects, actions, and options visible. The user

should not have to remember information from one part of the dialogue to another.

Instructions for use of the system should be visible or easily retrievable whenever

appropriate.

Read the full article at https://www.nngroup.com/articles/recognition-and-recall/

Flexibility and efficiency of use
Accelerators -- unseen by the novice user -- may often speed up the interaction for the

expert user such that the system can cater to both inexperienced and experienced users.

Allow users to tailor frequent actions.

Aesthetic and minimalist design
Dialogues should not contain information which is irrelevant or rarely needed. Every extra

unit of information in a dialogue competes with the relevant units of information and

diminishes their relative visibility.

Web Development Skills – Part A

139

Help users recognize, diagnose, and recover from errors
Error messages should be expressed in plain language (no codes), precisely indicate the

problem, and constructively suggest a solution.

More error message guidelines can be viewed at https://www.nngroup.com/articles/error-

message-guidelines.

Help and documentation
Even though it is better if the system can be used without documentation, it may be

necessary to provide help and documentation. Any such information should be easy to

search, focused on the user's task, list concrete steps to be carried out, and not be too large.

Shneiderman's "Eight Golden Rules of Interface Design"
These Golden Rules of Interface Design are taken from the book, Designing the User

Interface, which Ben Shneiderman co-authored. They were originally created in 1987 from

the research Shneiderman done in Human Computer Interaction. They are applicable for

most interactive systems.

These principles can help you create a well-designed User Interface and thereby improve

the usability of the system.

Source: Designing the User Interface: Strategies for Effective Human-Computer Interaction

Strive for consistency
Consistent sequences of actions should be required in similar situations; identical

terminology should be used in prompts, menus, and help screens; and consistent

commands should be employed throughout.

Enable frequent users to use shortcuts
As the frequency of use increases, so do the user's desires to reduce the number of

interactions and to increase the pace of interaction. Abbreviations, function keys, hidden

commands, and macro facilities are very helpful to an expert user.

Web Development Skills – Part A

140

Offer informative feedback.
For every operator action, there should be some system feedback. For frequent and minor

actions, the response can be modest, while for infrequent and major actions, the response

should be more substantial.

Design dialog to yield closure.
Sequences of actions should be organized into groups with a beginning, middle, and end.

The informative feedback at the completion of a group of actions gives the operators the

satisfaction of accomplishment, a sense of relief, the signal to drop contingency plans and

options from their minds, and an indication that the way is clear to prepare for the next group

of actions.

Offer simple error handling.
Where possible, design the system so the user cannot make a serious error. If an error is

made, the system should be able to detect the error and offer simple, comprehensible

mechanisms for handling the error.

Permit easy reversal of actions
This feature relieves anxiety, since the user knows that errors can be undone; it thus

encourages exploration of unfamiliar options. The units of reversibility may be a single

action, a data entry, or a complete group of actions.

Support internal locus of control
Experienced operators strongly desire the sense that they are in charge of the system and

that the system responds to their actions. Design the system to make users the initiators of

actions rather than the responders.

Reduce short-term memory load
The limitation of human information processing in short-term memory requires that displays

be kept simple, multiple page displays be consolidated, window-motion frequency be

reduced, and sufficient training time be allotted for codes, mnemonics, and sequences of

actions.

Web Development Skills – Part A

141

Reflection Exercise

Reflect on what you have learned about UX..

Use the space below

UX Glossary

Please see a glossary of terms at https://uxmastery.com/resources/glossary/

Web Development Skills – Part A

142

Breakout Exercise

Review Pol Kuijken’s case study on his ‘Google Design Exercise: Solving the shelter’

problem when he was applying for a position at Google.

https://medium.com/@polkuijken/pet-adoption-8798b14af117

The design brief was:

Millions of animals are currently in shelters and foster homes awaiting adoption.

Design an experience that will help connect people looking for a new pet with the

right companion for them. Help an adopter find a pet which matches their lifestyle,

considering factors including breed, gender, age, temperament, and health status.

Provide a high-level flow and supporting wire frames.

Web Development Skills – Part A

143

UX Resources

• https://www.interaction-design.org

• https://uxmastery.com

• https://wireframestogo.com/

• https://www.ted.com/talks/don_norman_on_design_and_emotion?language=en

• https://www.youtube.com/watch?v=v6n1i0qojws

• https://www.youtube.com/watch?v=a5KYlHNKQB8

• https://www.youtube.com/watch?v=MELKuexR3sQ

• https://www.springboard.com/blog/ux-design-principles/

• https://asktog.com/atc/principles-of-interaction-design/

• https://www.nngroup.com/

• www.centric.eu

• https://www.immagic.com/eLibrary/ARCHIVES/GENERAL/UXPIN_PL/U141030B.pdf

• https://ddf46429.springboard.com/uploads/resources/1548810145_Ebook__UX_Fun

damentals__Learn_the_Basics_of_IA_UX_and_UI_Design.pdf

• https://medium.com/tag/ux

• https://www.interaction-design.org/courses

• https://www.mockplus.com/blog/post/what-is-interaction-design-and-how-it-works

Web Development Skills – Part A

144

• https://hackernoon.com/why-ux-design-must-be-the-foundation-of-your-software-

product-f66e431cc7b4

• https://www.nngroup.com/

• https://www.designprinciplesftw.com/collections/don-normans-principles-of-design

• https://badhtml.com/

Examples & Breakout sourced from www.interaction-design.org, www.nngroup.com

www.medium.com and www.centric.eu.

