

National Workshop 3

LEAVING CERTIFICATE COMPUTER SCIENCE

Schedule

Session 1	Introduction to Data Analytics and ALT2		
11.00 – 11.30	Tea/Coffee		
Session 2	ALT2: Project Design (investigate/plan) and Presentations		
13.00 – 14.00	Lunch		
Session 3	Curriculum Planning LCCS Promotion		

Key Messages

Leaving Certificate Computer Science aims to develop and foster the learner's creativity and problem solving, along with their ability to work both independently and collaboratively.

Computing technology presents new ways to address problems and computational thinking is an approach to analyse problems, design, develop and evaluate solutions.

The ALTs provide opportunities for students to develop their theoretical and procedural understanding of the course.

The externally assessed coursework will be based on all learning outcomes, with those of strand 3 being particularly relevant.

Digital technologies can be used to enhance collaboration, learning and reflection.

Recap on National Workshop 2

Main topics...

Teaching and Learning Programming:

Challenges and Pedagogies

Scaffolded Learning: Use→Modify→Create

Computational Thinking CT Pedagogies

Pillars of Computational Thinking Unplugged Activities

Number System Conversions Problem Solving

ALT4 Embedded Systems

The Design Process LCCS Resources

Curriculum Planning

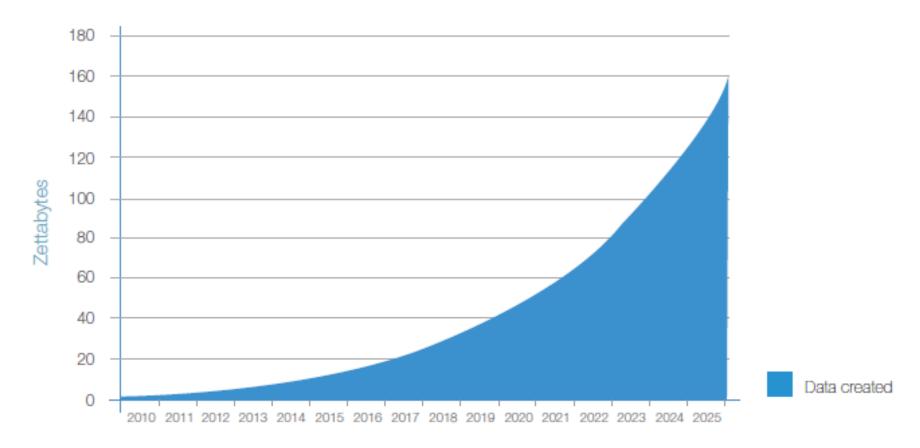
Session 1

Data Analytics and ALT2

"Data is the new oil"

Go to www.menti.com and use the code 59 580 587

What words do you associate with Data Science/Data Analytics?


Mentimeter

URL = www.menti.com

Code = 59 580 587

Annual Size of the Global Datasphere

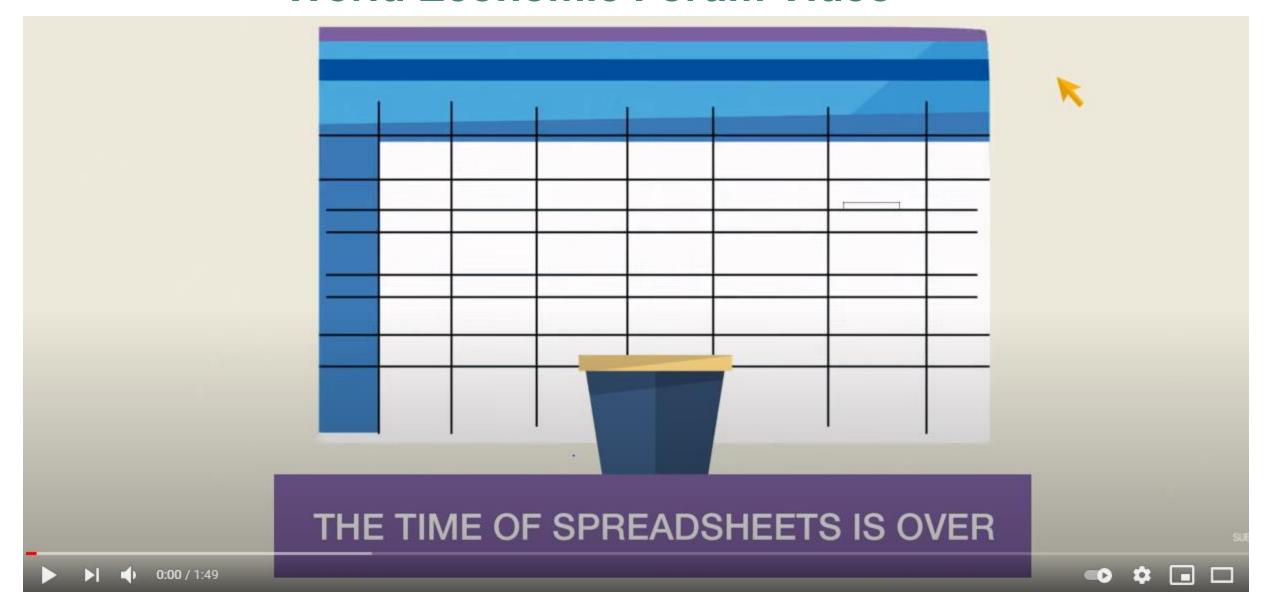
Source: IDC's Data Age 2025 study, sponsored by Seagate, April 2017

Grids

Data Capacity / Information Representation

A single bit can be used to encode (represent) two pieces of information

3 bits 8 things – 7 colours of the rainbow


7 bits can represent 128 ASCII values

8 bits == 1 Byte

Q. How many bytes would it take to store your name?

Unit	Symbol	Powers of 2	Decimal	
Kilobyte	1KB	2 ¹⁰ (1024) Bytes	10 ³ bytes	
Megabyte	1MB	2 ²⁰ (1024) KB	10 ⁶ bytes	
Gigabyte	1GB	2 ³⁰ (1024) MB	10 ⁹ bytes	
Terabyte	yte 1TB 2 ⁴⁰ (1024) 0		10 ¹² bytes	
Petabyte 1PB		2 ⁵⁰ (1024) TB	10 ¹⁵ bytes	

World Economic Forum Video

Go to www.menti.com and use the code 36 038 813

Assess your own knowledge/skill in relation to the following Data Science terminology

Mentimeter

No understanding	Data Analysis	
	Data Science	ا ا ق
	Data Visualisation	understanding
	Data Mining	ersto
ders	Data Transformation	Pun
Š	Big Data	llent
Ž	Machine Learning	Excellent
	Data Capture	_

URL = www.menti.com

Code = 36 038 813

Data Science ... Analysis ... Big Data

Data Science is an interdisciplinary field that uses scientific methods, processes, algorithms and systems to extract knowledge and insights from data in various forms, both structured and unstructured, similar to data mining.

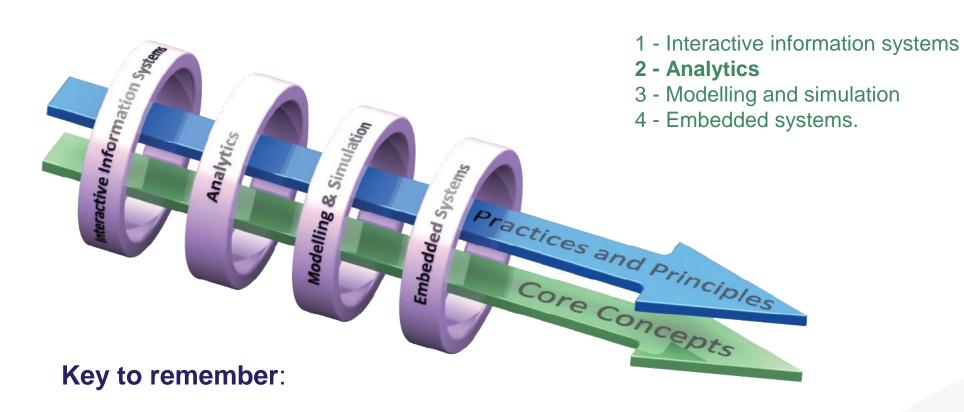
Data Analysis is a process of inspecting, cleansing, transforming, and modelling data with the goal of discovering useful information, informing conclusions, and supporting decision-making

Big Data is extremely large data sets that may be analysed computationally to reveal patterns, trends, and associations, especially relating to human behaviour and interactions.

Data mining is the practice of examining large pre-existing databases in order to generate new information.

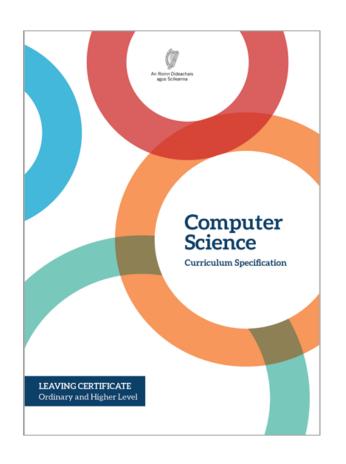
Machine Learning is a method of data analysis that automates analytical model building. It is a branch of artificial intelligence based on the idea that systems can learn from data, identify patterns and make decisions with minimal human intervention.

5 minute stretch break



LCCS Interwoven

The four applied learning tasks explore the four following contexts:


Explore and teach the LOs through the lens of ALTs.

Applied Learning Tasks (ALTs)

'Each of which results in the creation of a real or virtual computational artefact and a report.'

'Where possible, the artefacts should be beneficial to the community and society in general.'

'These artefacts should relate to the students' lives and interests.'

'Examples of computational artefacts include programs, games, web pages, simulations, visualisations, digital animations, robotic systems, and apps.'

'Students work in teams to carry out four applied learning tasks over the duration of the course.'

Applied Learning Task 2: Analytics

"Hypothesising, making predictions, examining evidence, recognising patterns and reaching conclusions are at the heart of computer science"

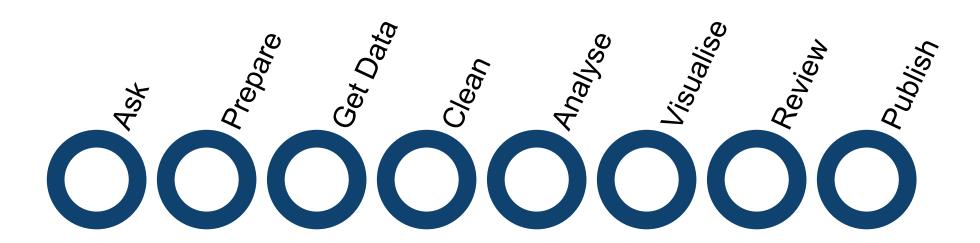
"Students will identify an interdisciplinary topic, develop a hypothesis and utilise existing resources to highlight the salient information and inform future decisions"

> "By identifying, analysing, and deconstructing a problem, students will deepen their understanding of the practices and principles of computer science"

> > LCCS Specification: p22

ALT2 Learning Outcomes

- 3.4. Develop algorithms that can find the frequency, mean, median and mode of a data set.
- 3.5. Structure and transform raw data to prepare it for analysis.
- 3.6. Represent data to effectively communicate in a graphical form.
- 3.7. Use algorithms to analyse and interpret data in a way that informs decision-making.



Data Science Arc

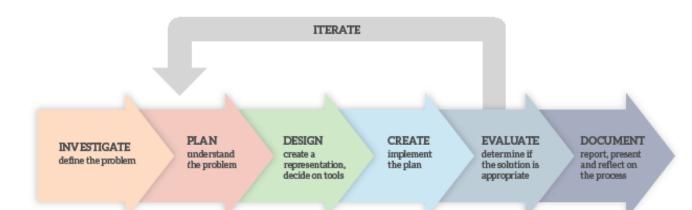


Figure 3: Overview of a design process

ASK – The Question that starts the journey

PREPARE – Sketch out, think through ideas to organise work.

GET DATA – Collect, enter, reuse or repurpose.

CLEAN – Format, layout, organise.

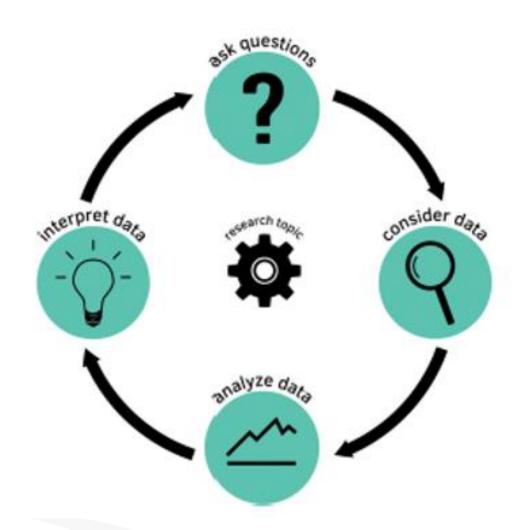
ANALYSE – Format, layout, organise, sort, filter, summarize, triangulate.

VISUALISE – Format charts, tables, add logos, branding, colours.

REVIEW – Gather feedback, find errors, check interpretations.

PUBLISH – Secure and share within or outside the team.

Data Cleansing

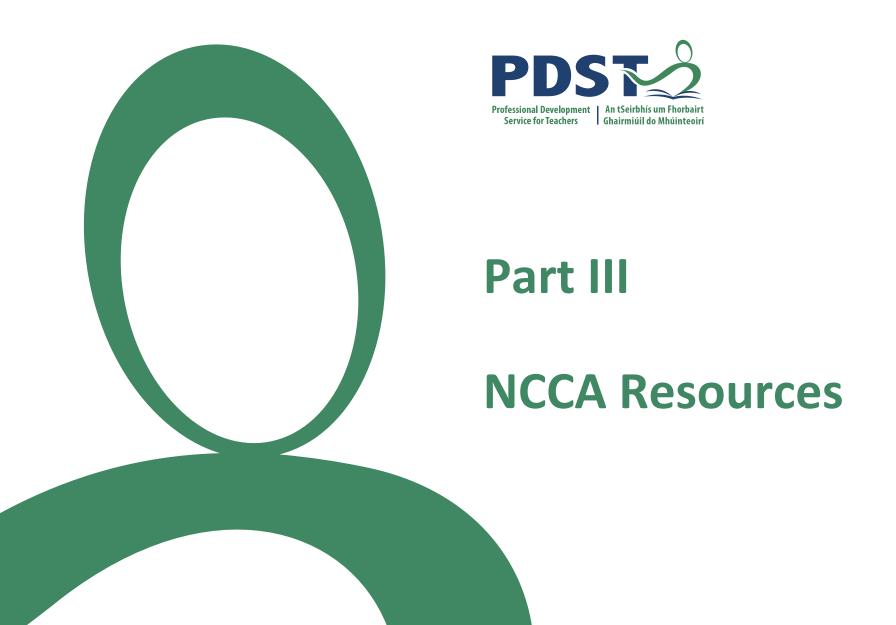

The data set below shows the raw data collected from the result of a 100m school race.

Surname	Gender	Age	Time
Murphy	M	17	13,12
Ogene	M	16	12.14
Ogene	M	16	12.14
Mc Intyre	F.	17	12.87
Lopez	F	-18	14.01
	F	17	1 329
McCarthy	M	77	13.65
Ó Brádaigh	f	16	13.09

Problems?

The Data Cycle – an alternative framework

Group Activity / Breakout


Questions to discuss

- 1. What prior knowledge will students have that is relevant to ALT2?
- 2. What may challenge students in dealing with ALT2?
- 3. What approach could you take to introduce ALT2 to your students and support their progress?

Demonstration of Samples

Tea/Coffee

